
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319179017

Syntactic Zoom-Out / Zoom-In Code with the Athenizer

Conference Paper · September 2017

DOI: 10.1109/VISSOFT.2017.26

CITATION

1
READS

368

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Spartan Refactoring View project

The Spartanizer View project

Dor Ma'ayan

Technion - Israel Institute of Technology

11 PUBLICATIONS 30 CITATIONS

SEE PROFILE

All content following this page was uploaded by Dor Ma'ayan on 19 August 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/319179017_Syntactic_Zoom-Out_Zoom-In_Code_with_the_Athenizer?enrichId=rgreq-f0514a3cf61d3fdaacd3f8bdabc53a16-XXX&enrichSource=Y292ZXJQYWdlOzMxOTE3OTAxNztBUzo1MjkwMzUxNzc1MzM0NDBAMTUwMzE0MzIyMzUxMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/319179017_Syntactic_Zoom-Out_Zoom-In_Code_with_the_Athenizer?enrichId=rgreq-f0514a3cf61d3fdaacd3f8bdabc53a16-XXX&enrichSource=Y292ZXJQYWdlOzMxOTE3OTAxNztBUzo1MjkwMzUxNzc1MzM0NDBAMTUwMzE0MzIyMzUxMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Spartan-Refactoring?enrichId=rgreq-f0514a3cf61d3fdaacd3f8bdabc53a16-XXX&enrichSource=Y292ZXJQYWdlOzMxOTE3OTAxNztBUzo1MjkwMzUxNzc1MzM0NDBAMTUwMzE0MzIyMzUxMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-Spartanizer?enrichId=rgreq-f0514a3cf61d3fdaacd3f8bdabc53a16-XXX&enrichSource=Y292ZXJQYWdlOzMxOTE3OTAxNztBUzo1MjkwMzUxNzc1MzM0NDBAMTUwMzE0MzIyMzUxMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f0514a3cf61d3fdaacd3f8bdabc53a16-XXX&enrichSource=Y292ZXJQYWdlOzMxOTE3OTAxNztBUzo1MjkwMzUxNzc1MzM0NDBAMTUwMzE0MzIyMzUxMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dor-Maayan?enrichId=rgreq-f0514a3cf61d3fdaacd3f8bdabc53a16-XXX&enrichSource=Y292ZXJQYWdlOzMxOTE3OTAxNztBUzo1MjkwMzUxNzc1MzM0NDBAMTUwMzE0MzIyMzUxMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dor-Maayan?enrichId=rgreq-f0514a3cf61d3fdaacd3f8bdabc53a16-XXX&enrichSource=Y292ZXJQYWdlOzMxOTE3OTAxNztBUzo1MjkwMzUxNzc1MzM0NDBAMTUwMzE0MzIyMzUxMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technion-Israel_Institute_of_Technology?enrichId=rgreq-f0514a3cf61d3fdaacd3f8bdabc53a16-XXX&enrichSource=Y292ZXJQYWdlOzMxOTE3OTAxNztBUzo1MjkwMzUxNzc1MzM0NDBAMTUwMzE0MzIyMzUxMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dor-Maayan?enrichId=rgreq-f0514a3cf61d3fdaacd3f8bdabc53a16-XXX&enrichSource=Y292ZXJQYWdlOzMxOTE3OTAxNztBUzo1MjkwMzUxNzc1MzM0NDBAMTUwMzE0MzIyMzUxMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dor-Maayan?enrichId=rgreq-f0514a3cf61d3fdaacd3f8bdabc53a16-XXX&enrichSource=Y292ZXJQYWdlOzMxOTE3OTAxNztBUzo1MjkwMzUxNzc1MzM0NDBAMTUwMzE0MzIyMzUxMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Syntactic Zoom-Out / Zoom-In Code with
the Athenizer

Yossi Gil Dor Ma’ayan Niv Shalmon

Raviv Rachmiel Ori Roth

Department of Computer Science
The Technion—Israel Institute of Technology,

Technion City, Haifa 3200003, Israel

Abstract—Care and great effort are often taken to
dress program code of libraries, just as model imple-
mentations, in its most presentable form, which includes
adherence to strict coding standards, careful selection of
identifiers, avoiding unnecessary constructs, etc. How-
ever, a presentable dress is not a janitor’s uniform and
is often inferior to the more lax working outfit.

The spartanizer is a tool that brings Java code into a
canonical, short form. Trying to say the most with the
fewest words. In contrast, the athenizer is a tool that
expands the code, placing it in a more maintainable
form, using plenty of auxiliary variables, many potential
locations for breakpoints and for change.

The tool reported on here allows developers to in-
teractively use their joystick and its buttons for code
navigation, and in particular for zooming-in into the
code (athenizing) and zooming-out of it (spartanizing).

I. Introduction

Ancient Sparta was the archetype of minimalism.
Spartan conduct is frugal, despising luxuries. “La-
conic speech”—the art of saying little in few words—
is eponym for Laconia, this region of Greece, of
which Sparta was capital, and a source of great
ridicule of Spartans by the hedonistic Athenians.
This work describes a tool1 that makes it possi-

ble for programmers to (metaphorically) move from
Sparta and Athens and back, i.e., go from a short,
laconic version of their code (Spartan code), to its
verbose version and back.
Spartan programming [1]–[3] is a coding style and

abstract teaching that promotes coding with the
equivalent of laconic speech—using as few words as
possible to write your code, while being careful to
avoid degrading into obfuscation nor to the horrors
of code-golfing. Spartan code is easily recognizable,
(see e.g., Fig. 1), and as our experience (both as
developers and clients) indicates, is very readable
after a short learning curve [1].
While reading code of others, programmers are

often intrigued by questions such as: “why did my
peer define this variable?", and “why did he use a
while here, when a for is so much more appropriate?”,
etc. If the examined code is spartanized code, then
the answer to these questions are often: because the
standard says so.

1see accompanying video at http://bit.ly/athenizer

/** Class generated automatically by defining a generic class representing
* a cell, then applying Eclipse to automatically generate equality, hashing
* and other standard methods, and then fully spartanizing the resulting
* code. */
public class Cell<T> {
private final T inner;
public Cell(T inner) { this.inner = inner; }

public int hashCode() {
return 31 + ((inner == null) ? 0 : inner.hashCode());

}

public boolean equals(Object ¢) {
return ¢ == this || ¢
!= null && getClass() == ¢.getClass() && equals((Cell) ¢);

}
private boolean equals(Cell ¢) {
return inner==null ? ¢.inner==null : inner.equals(¢.inner);

}
} // class Cell

Figure 1: A spartanized Java class

When the same code structure can be rewritten is
several different ways, the spartanizer will make a
serious attempt at selecting the shortest and more
canonical one.2

An advantage is also that this (pseudo) canonical
form leads to fewer collisions [4] in using version
control systems. Empirical evidence is still required
to show what some believe: that the “little ink”
policy of spartanization is easier on the reading
eye, requires less scrolling, and reduces the time of
browsing through code of others.

@Override
public int hashCode() {
int i1;
int i2;
if (inner == null) {
i2 = 0;

} else {
i2 = inner.hashCode();

}
i1 = 31 + (i2);
return i1;

}

@Override
public int hashCode() {
int i1;
int i2;
if (inner == null) {
i2 = 0;

} else {
i2 = inner.hashCode();

}
i1 = 31 + (i2);
return i1;

}

Figure 2: Function
hashCode of Fig. 1
fullly expanded by
the athenizer

However, with experience in us-
ing the spartanizer [1] accumulat-
ing, so came the demand of pro-
grammers to move from the aus-
tere to the lavish, and from the
spartan to the hedonistic. Mostly
during debugging, but also in other
occasions, there are times in which
an expanded version of the code is
required.

Indeed, to check whether a hash
function is homogeneous and does
not include multiplication by zero,
or redundant operations, one may
prefer the version in Fig. 2 over the

2As with all refactoring tools, the spartanizer may break code
in the process of transformation.

http://bit.ly/athenizer

spartanized version in Fig. 1.
Contribution: Refactoring [5] was originally ad-

vertised for making it possible to improve design and
other code qualities dynamically. In this work, we
take refactoring to a different domain: interactive,
reversible refactoring not for improving the code, but
rather for inspecting it from different angles.
Our model programmer is an individual who likes

to keep her code representative, neat and com-
pact, without compromising the ability to focus into
details, poke breakpoints, debug, instrument, and
quickly manipulate the code in other ways. We found
that athenizing the code indispensable with limita-
tions of contemporary debuggers, in which inspec-
tion of intermediate values is often cumbersome or
impossible and single stepping is still done in line-
by-line mode.

II. Spartan Programming and the Spartanizer

This section is a brief overview of Spartan program-
ming [3] and the spartanizer [1], which is a coding
style that tries to follow the spirit of visionaries like
Dijkstra [6] in focusing on minimalism. Towards this
end, spartan programming enables its followers to
minimize size metrics of their code, including
• Code size, measured in terms of number of char-
acters, lines, and language tokens;

• Vertical complexity, specifically, the number of
lines in each individual software modules;

• Horizontal complexity, i.e., the number of param-
eters in classes or methods, the level of nesting
of control commands, such as while, switch, if,
etc.

• Control complexity, namely the total number of
control commands.

• Variability, which implies a minimization of the
variables ability to change, not to mention visi-
bility, lifetime, and scope, just as their number.

• Exploitation of environment, in terms of number
of distinct identifiers (of fields, methods, etc.)
used in any module.

The spartanizer is an Eclipse refactoring plugin
composed of tippers—nano refactorings trying to
minimize these metrics as much as possible while
keeping the semantics of the code unchanged. The
plugin can be applied in batch, to spartanize large
projects and interactively as part of the development
process.

III. Zooming In and Out of Code

The athenizer is the dual of the spartanizer: The
spartanizer shrinks the code without changing its
functionality; the athenizer expands the code without
changing its functionality. Why have the two? For the
same reason we have casual and formal items in our
wardrobe, and for the same reason that Eclipse offers
an outline and a type hierarchy views of the code.
Think of these two extremes of modes of the code:
• Working Mode: describes the code during writing
and debugging. During these stages of develop-
ment we would like to “zoom-in“ on specific

parts of the code and see them in as much details
as possible. In this mode, we can follow the
flow of the program in a finer granularity. For
example, this makes finding the specific point
at which a bug occurs easier.

• Polished Mode: describes the code before sharing
it with other developers and before releasing
it. At this mode we would like the code to
be as canonical as possible. In this mode, the
programmers has a broader, bird’s eye view of
the code.

Accordingly, the zoom-in/zoom-out operations
into code can be visualized like so;

AthenizedSpartanized

Code Information Density

zoom level

The left hand side of the diagram denotes fully
spartanized code, with high information density. At
the right, we see athenized code. Dynamic zooming
allows one to change the information density, moving
between the two ends at small steps.

IV. The Athenizer as Minimizer of Metrics

While the spartanizer minimizing the above men-
tioned spartan programming metrics, the athenizer
tries to minimize the effect of each individual state-
ment, breaking each statement into many smaller
statements which together preform the same oper-
ation as the original.

The statement int i=1; can be broken into two
statements int i; i=1; each of which is essential,
i.e., eliminating any one of them would either change
the semantics of the program, or prevents it from
compiling. The athenizer thus never expands the
statement int i; into the two statements:

int i;
;

By asking that the impact of a statement be as
small as possible (but without being zero), we allow
the programmer to examine each little step individ-
ually, concentrate on the smallest steps, but spend
time on steps that do nothing.

Other metrics we use are
• Total length of the code (by number of lines)
• Number of control structures
• Number of variables
By increasing these metrics we provide an ability

to “Zoom-In“ into the code and look at it in its
most extended way, including separate if statements,
separate catch clauses, temporary variables in com-
plicated computations and many other.

In order to demonstrate some of the refactorings
done by the Athenizer, Fig. 2 presents the original
code from Fig. 1 fully athenized.

We see that the athenized code is greatly expanded
compared to the original code: the ternary expression
was expanded to if statements, and the complicated
arithmetic computation of the hash code was split

2

into temporary variables. This example demonstrates
the differences between spartanized code to athenized
code: While the spartanized version minimized the
total length of the code, the athenized version mini-
mized the operation each one of the statements does.
Minimizing the operation of each code statement

may be useful during the development and debug-
ging. Consider e.g., the four dense lines in Fig. 3.
The semantics of these are clear to most readers, in

the sense that the algorithm is clear to people famil-
iar with the domain: examining a ternary expression,
choose either its elze or then branch (one of which
must be boolean), and then convert it to a simpler
boolean expression.
In contrast, the zoomed-in version of the code in

Fig. 4, allows one to side step the algorithm, debug
it and modify it: In particular, we can see that every
sub-expression is assigned to a temporary variable
and that ternary expressions are expanded into if
statements.

V. User Interface

A. Graphical User Interface

The athenizer comes is part of a larger Eclipse
plugin available through the Eclipse marketplace 3.
The functionalities of the athenizer are accessible
through the Spartanizer menu, in the Athenizer sub
menu (Fig. 5). The Athenizer offers the following
operations:
• Current Selection Expand once withing the current
selection of test

• Active Window Fully expand the active window
• Toggle Athenizer Toggle the athenize mode
• Zoom In Once Activate one tipper on the active
window (from the Spartanizer)

• Zoom Out Once Expand once in the active window

Figure 5: The main menu of the Spartanizer plugin

While the athenize mode it activated, the code can
be expanded and contract the code freely by holding
the control button and scrolling the mouse wheel.
This allows you to control exactly how much the code
expands through an easy and intuitive interface. You
can tell whether the athenizer is activated by the left
most icon in the Spartanizer tool-bar.

B. Programming With Joystick

Besides of zooming in and out with the mouse
wheel, we tried to follow a futuristic vision of multi
dimensional code viewing. By this we mean that
the programmer can zoom into the code both hori-
zontally (athenizing) and vertically (expanding short

3https://marketplace.eclipse.org/content/spartan-refactoring-0

names). Yet a third dimension, font size, is also
possible, but is out of this scope.

Using the joystick as a tool for coding is a revo-
lutionary step, follows the vision of others [7]: “The
developer could stay focused on the code when he used
marking menus for refactoring, as opposed to linear
menus, which were distracting".

We speculate that refactoring using gestures of a
joystick will be more convenient for programmers. In
other words, it can be inferred that using the joystick
will be an intuitive way for refactoring, or, in our
case, spartanizing and athenizing (both described as
refactoring methods(see Sect. II)).

We noticed that the use of the joystick is intuitive
and straightforward according to the user interface of
the project. In addition to zooming in and out with
the joystick, we utilized the left and right gestures
in order to expand and spartanize variable names.
Thus, names are generated for variables according to
their type (using binding, as a function of the desired
length (expanded or spartanized)).

VI. Design and Implementation

The athenizer relies on the modular design of the
spartanizer, which makes it easy to encapsulate code
transformations and apply these at will.

Code analysis is by JDT [8] (Eclipse Java devel-
opment Tools) and the support of the Java IDE to
Eclipse platform. The main data type offered the JDT
is the AST-Node, i.e., a node in the abstract syntax
tree.

The JDT represents a Java [9] source file as an AST
(Abstract Syntax Tree) that includes all syntactical
elements (including JavaDOC comments, but not
other comments). Nodes in this tree come in many
different types that represent the many different
Java syntactical categories, including node types such
as TypeDeclaration, MethodDeclaration, Statement,
CompilationUnit, etc. All these types are organized
in an inheritance hierarchy comprising circa 100
different types. The JDT provides mechanisms for
traversing the tree and modifying it. These mecha-
nisms are augmented by binding information: With
the help of the IDE, the client can follow a reference
from a definition of an entity, such as a local variable

final Thingy thing = new Thing())

to the typing information assumed for this entity,
such as a reference to the definition

class Thingy { . . .}

The AST tool is a Java model which provides an
API for many others, fully modeling the syntax of
Java and providing us a full analysis of the code. An
API for traversing different ASTNodes is provided as
well and we found it useful for the implementation
of some advanced refactoring techniques. We also
use tools from eclipse RCP (rich client platform) 4 in
order to design our graphical user interface. Bloaters

4https://wiki.eclipse.org/Rich_Client_Platform

3

https://marketplace.eclipse.org/content/spartan-refactoring-0
https://wiki.eclipse.org/Rich_Client_Platform

final boolean~$ = !iz.booleanLiteral(then);
final Expression other =~$? then : elze;
final boolean literal = az.booleanLiteral($? elze : then).booleanValue();
return subject.pair(literal !=~$? main : make.notOf(main), other).to(literal ? CONDITIONAL_OR : CONDITIONAL_AND);

Figure 3: Four lines of heavily spartanized code

final boolean~$;
boolean b1;
b1 = iz.booleanLiteral(then)

;
$ = !b1;
final Expression other;
if ($) {
other = then;

} else {
other = elze;

}
final boolean literal;
BooleanLiteral l1;
ASTNode n1;
if ($) {
n1 = elze;

} else {
n1 = then;

}

l1 = az.booleanLiteral(n1);
literal = l1.booleanValue();
InfixExpression x1;
Pair p1;
Expression x2;
if (literal !=~$) {
x2 = main;

} else {
x2 = make.notOf(main);

}
p1 = subject.pair(x2, other);
Operator o1;
if (literal) {
o1 = CONDITIONAL_OR;

} else {
o1 = CONDITIONAL_AND;

}
x1 = p1.to(o1);
return x1;

Figure 4: Athenized version of the code in Fig. 3

are refactoring rules which operate over ASTNodes.
Each bloater implement a nano-scale5 rafactoring—
in the code while preserving the code semantics.
Bloaters follow the typestate [10] semantics. Before

any change is done over the actual ASTNode of the
code, prerequisites are checked and only if they are
satisfied, the modification of the AST occurs. Check-
ing prerequisites before any operation of the bloater
makes assures that the applied transformation on the
ASTNodes do not lead to unpredictable, potentially
detrimental, or even dangerous, side effects.
In order to keep the refactored code as safe as pos-

sible, any bloater must satisfy a list of prerequisites
before operating over an ASTNode.

VII. Conclusion

The athenizer is a new part of the spartan sefactor-
ing6 Eclipse plugin that features reverse refactoring
techniques to those the original spartanizer offers.
Spartan programming is a methodology that strives
to obtain an extreme minimalism of code element.
Athenization does the opposite—try to minimize the
impact of each individual statement.
With the athenizer, the plugin now offers pro-

grammers the ability to “Zoom-In” into their code
and “Zoom-Out” of it. These operations can be
done with the mouse wheel or a joystick controller.
We explained how these operations correspond to a
working mode and polished mode of the code, and
how the zoom operations moves the code along the
scale between the two modes.

5small changes to the code aimed to increase the metrics listed
above while preserving the code semantic

6https://github.com/SpartanRefactoring/Main/

As described on Sect. V-B, turning a joystick right
and left while using the plugin will increase or de-
crease the length of identifiers in the code. Currently,
we demonstrate a basic heuristic for giving names to
identifiers. The issue of giving names to identifiers
is also reflected while using bloaters which create
new variables. We identify a potential for future
research over the issue of giving meaningful names
to identifiers in a code, possibly by machine learning
techniques.

The plugin is actively maintained. Latest release
is 2.12.1 (June 2017). The plugin is available at the
eclipse marketplace7, and open source on GitHub 8

Acknowledgments: We pay tribute to Dr. Adi
Omari who wisely and patiently lead the production
team. Tomer Dragucki and Yuval Simon were active
in the implementation of the athenizer. See also the
full list of contributors to the spartanizer project
in [1] and in 9.

This research was supported by the Israel science
foundation (ISF grant No. 1803/13*).

References

[1] Y. Gil and M. Orrù, “The spartanizer: Massive automatic
refactoring,” in Soft.Analysis, Evolution and Reengineering
(SANER), 2017 IEEE 24th Int. Work. on. IEEE, 2017, pp.
477–481.

[2] J. Atwood, “Spartan prog.” https://blog.codinghorror.com/
spartan-programming/.

[3] J. Y. Gil, Reflections on Spartan Prog.and the No-Debugger
Principle. Berlin, Heidelberg: Springer Verlag, Oct. 2011,
pp. 5–8. [Online]. Available: http://dx.DOI.org/10.1007/
978--3--642--19583--9_4

[4] M. L. Guimarães and A. R. Silva, “Improving early
detection of soft. merge conflicts,” in Proc. 34th Int.
Work. on Soft.Eng., ser. ICSE ’12. Piscataway, NJ, USA:
IEEE Press, 2012, pp. 342–352. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2337223.2337264

[5] M. Fowler, Refactoring: improving the design of existing code.
Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1999.

[6] E. W. Dijkstra, “Letters to the editor: Go to statement
considered harmful,” Comm.ACM, vol. 11, no. 3, pp.
147–148, Mar. 1968. [Online]. Available: http://DOI.acm.
org/10.1145/362929.362947

[7] E. Murphy-Hill, M. Ayazifar, and A. P. Black, “Restructuring
Soft.with Gestures,” in 2011 IEEE Symp. Visual Lang. and
Human-Centric Computing (VL/HCC). IEEE, 2011, pp.
165–172. [Online]. Available: http://people.engr.ncsu.edu/
ermurph3/papers/vlhcc11.pdf

[8] E. Gamma and K. Beck, Contributing to Eclipse:
Principles, Patterns, and Plugins. Addison-Wesley,
2003. [Online]. Available: http://www.amazon.com/
Contributing-Eclipse-Principles-Patterns-Plugins/dp/
0321205758

[9] K. Arnold and J. Gosling, The Java Programming Language,
ser. The Java Series. Reading, MA: Addison-Wesley Pub-
lishing Company, 1996.

7http://marketplace.eclipse.org/content/spartan-refactoring-0
8https://github.com/SpartanRefactoring/Main/releases
9http://bit.ly/spartan_contributors

4

https://github.com/SpartanRefactoring/Main/
https://blog.codinghorror.com/spartan-programming/
https://blog.codinghorror.com/spartan-programming/
http://dx.DOI.org/10.1007/978--3--642--19583--9_4
http://dx.DOI.org/10.1007/978--3--642--19583--9_4
http://dl.acm.org/citation.cfm?id = 2337223.2337264
http://dl.acm.org/citation.cfm?id = 2337223.2337264
http://DOI.acm.org/10.1145/362929.362947
http://DOI.acm.org/10.1145/362929.362947
http://people.engr.ncsu.edu/ermurph3/papers/vlhcc11.pdf
http://people.engr.ncsu.edu/ermurph3/papers/vlhcc11.pdf
http://www.amazon.com/Contributing-Eclipse-Principles-Patterns-Plugins/dp/0321205758
http://www.amazon.com/Contributing-Eclipse-Principles-Patterns-Plugins/dp/0321205758
http://www.amazon.com/Contributing-Eclipse-Principles-Patterns-Plugins/dp/0321205758
http://marketplace.eclipse.org/content/spartan-refactoring-0
https://github.com/SpartanRefactoring/Main/releases
http://bit.ly/spartan_contributors

[10] R. E. Strom and S. Yemini, “Typestate: A prog. lang.concept
for enhancing soft.reliability,” IEEE Trans.Soft.Eng., vol. 12,
no. 1, pp. 157–171, Jan. 1986. [Online]. Available: http:
//dx.DOI.org/10.1109/TSE.1986.6312929

Appendix

This is the typescript of the plug-in screen cast10:
“Hello everyone, and welcome to the Athenizer plug-in.

With the Athenizer you can zoom in and out of your code,
so when you want to concentrate on some hard part in your
code you can zoom in the code and understand it better.

Here is an example. This example is be from a real GitHub
project we imported. Take a look at this Java program.

We have a bug inside this project, so when we run the tests,
the tests fail as you can see now when we go to the line which
failed the test. We see it is really hard to understand the line
because there is a long if and we dont know exactly where the
bug is. We would like to expand this code. Maybe expand the
ternary expression. When I say “ternary” I mean the funny
“question-mark” column” operator, which is similar to an if
statement, except that it is an operator, not a statement.

So let us expand the code using our joystick. As you can see
we expand the code, making it clearer and easier to understand.
We expand ternary expressions, extract variables, expand com-
putations to temporary variables and increase dramatically the
total size of the code while keeping the original logic of it.

As you can see the code is longer now and it will be easier
to detect the exact error, so lets run again the tests.

Now we can see that we get an exception on a much more
concrete line of the code. We get a null pointer exception on
ownerType variable and now, when we see more details about
it, we can fix it.

Let’s run again the tests and here we see that all tests pass.
Hooray!

All that is left for now is to squeeze the code back again,
before we push it back to GitHub. So let’s do it.

Now lets see some other features we have in the Athenizer
plug-in.

We can expand and squeeze the whole code in the active
window with a click of a button or, as we see here, using a
button on the joystick.

The athenizer plug-in is available for free download on the
eclipse marketplace and as an open source project on GitHub.

Thats it for today, thank you for watching wish you a
joy(stick)ful coding.

10http://bit.ly/athenizer

5
View publication stats

http://dx.DOI.org/10.1109/TSE.1986.6312929
http://dx.DOI.org/10.1109/TSE.1986.6312929
http://bit.ly/athenizer
https://www.researchgate.net/publication/319179017

