
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326471588

The quality of junit tests: an empirical study report

Conference Paper · May 2018

DOI: 10.1145/3194095.3194102

CITATIONS

6
READS

1,255

1 author:

Some of the authors of this publication are also working on these related projects:

Spartan Refactoring View project

The Spartanizer View project

Dor Ma'ayan

Technion - Israel Institute of Technology

11 PUBLICATIONS 30 CITATIONS

SEE PROFILE

All content following this page was uploaded by Dor Ma'ayan on 01 August 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/326471588_The_quality_of_junit_tests_an_empirical_study_report?enrichId=rgreq-8a10ee869bce1bc16594ea7ada15b826-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ3MTU4ODtBUzo2NTQ4MjkwNTE0NTM0NDBAMTUzMzEzNDgyMDQwOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/326471588_The_quality_of_junit_tests_an_empirical_study_report?enrichId=rgreq-8a10ee869bce1bc16594ea7ada15b826-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ3MTU4ODtBUzo2NTQ4MjkwNTE0NTM0NDBAMTUzMzEzNDgyMDQwOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Spartan-Refactoring?enrichId=rgreq-8a10ee869bce1bc16594ea7ada15b826-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ3MTU4ODtBUzo2NTQ4MjkwNTE0NTM0NDBAMTUzMzEzNDgyMDQwOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-Spartanizer?enrichId=rgreq-8a10ee869bce1bc16594ea7ada15b826-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ3MTU4ODtBUzo2NTQ4MjkwNTE0NTM0NDBAMTUzMzEzNDgyMDQwOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8a10ee869bce1bc16594ea7ada15b826-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ3MTU4ODtBUzo2NTQ4MjkwNTE0NTM0NDBAMTUzMzEzNDgyMDQwOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dor-Maayan?enrichId=rgreq-8a10ee869bce1bc16594ea7ada15b826-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ3MTU4ODtBUzo2NTQ4MjkwNTE0NTM0NDBAMTUzMzEzNDgyMDQwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dor-Maayan?enrichId=rgreq-8a10ee869bce1bc16594ea7ada15b826-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ3MTU4ODtBUzo2NTQ4MjkwNTE0NTM0NDBAMTUzMzEzNDgyMDQwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technion-Israel_Institute_of_Technology?enrichId=rgreq-8a10ee869bce1bc16594ea7ada15b826-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ3MTU4ODtBUzo2NTQ4MjkwNTE0NTM0NDBAMTUzMzEzNDgyMDQwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dor-Maayan?enrichId=rgreq-8a10ee869bce1bc16594ea7ada15b826-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ3MTU4ODtBUzo2NTQ4MjkwNTE0NTM0NDBAMTUzMzEzNDgyMDQwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dor-Maayan?enrichId=rgreq-8a10ee869bce1bc16594ea7ada15b826-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ3MTU4ODtBUzo2NTQ4MjkwNTE0NTM0NDBAMTUzMzEzNDgyMDQwOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

TheQuality of Junit Tests
An Empirical Study Report

Dor D. Ma’ayan
Department of Computer Science

The Technion

Haifa, Israel

dorma10@campus.technion.ac.il

ABSTRACT

The quality of unit tests gains substantial importance in modern

software systems. This work explores the way in which Junit tests

are written in real world Java systems. We analyse 112 Java repos-

itories and measure the quality of unit tests by finding patterns

which indicate good practices of coding. Our results show that the

quality of real world unit tests is low, and that in many cases, unit

tests don’t follow the well-known recommendations for writing

unit tests. These early results demonstrate the need for more tools

and techniques for refactoring of tests.

CCS CONCEPTS

• Computer systems organization→ Embedded systems; Re-

dundancy; Robotics; • Networks→Network reliability;

KEYWORDS

Software Engineering, Testing, Algebraic Representation, Taxon-

omy, Software Metrics

ACM Reference Format:

Dor D. Ma’ayan. 2018. The Quality of Junit Tests: An Empirical Study

Report. In SQUADE’18:: SQUADE’18:IEEE/ACM 1st International Workshop

on Software Qualities and their Dependencies , May 28, 2018, Gothenburg,

Sweden. ACM, New York, NY, USA, Article 4, 4 pages. https://doi.org/10.

1145/3194095.3194102

1 INTRODUCTION

Unit tests are taking a central part in modern code; they allow

individual checking of properties in the program with complete

isolation, and can be helpful for finding bugs during the develop-

ment process. Automated testing frameworks, such as the xUnit

collection transformed the task of writing unit tests to be easy and

convenient then ever. However, the task of writing high quality unit

test is still not trivial [3]. In addition, tests require maintenance as

any other software component. Existing research explores ways to

enhance the process of writing unit tests and maintaining them by

defining metrics and by proving correlation between test attributes

to the quality of tests in practise. There are also many blog posts,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SQUADE’18:, May 28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5737-1/18/05. . . $15.00
https://doi.org/10.1145/3194095.3194102

stack overflow issues, books and papers which discuss how to write

quality unit tests [8]. However, a little is known on how do devel-

opers write unit tests in practise and whether developers use all

these good practices while writing tests. Answering this question

might reveal existing problems in tests design, both in terms of test

structure and in API usability.

This short paper presents early results trying to address these

questions. We analyse the Qualitas corpus containing 128 Java [2]

repositories and detect patterns of Junit. Our results show that at

least with Junit, there is a significant gap between recommendations

to practise: 61% of all tests contain more than a single assertion,

nearly 78% of all assertTrue and assertFalse assertions do not

contain a customized error message and there is a poor usage of

Hamcrest testing framework with less than 1% within all test meth-

ods using it.

Outline. The reminder of this paper is organized as follows. A short

description of well-known recommendations for writing good unit

tests followed by our research questions is provided at Sect. 2, Sect. 3

describes the methodology of our empirical study. . Sect. 4 presents

preliminary results and answers the research questions, and Sect. 7

concludes.

2 RESEARCH QUESTIONS

The following section is organized as follows. Each subsection lists

properties and good practices for writing unit tests and Junit in

particular. Following each of these recommendations we present a

research question which will be answered at Sect. 4.

2.1 The Single Checkpoint Principle

An important principle of any unit test is the single checkpoint principle:

tests should have only one reason to fail and only one location for

that failure to occur. In other words, each unit test should con-

tain only one assertion, i.e., checking point. The single checkpoint

principle is a solution to the Obscure Tests Problem [8, 10].

As an example, consider t1() Junit test at Fig. 1. This is an

example of a classic Junit method with multiple assertions.

In a case of failure of that test, the developer does not know if a

single correction will fix the test since there are too many check

points with possible failure locations. In case where an assertion is

failed, all the next assertions within the scope of the method will

not get verified and the programmer will get a narrow picture over

the correctness of the system. Possible solution is to verify that

each test contains only one assertion.

Notice that in fact, it is not necessary that a method will contain

a single assertion in order to follow the single checkpoint principle

33

2018 ACM/IEEE 1st International Workshop on Software Qualities and their Dependencies

SQUADE’18:, May 28, 2018, Gothenburg, Sweden Dor D. Ma’ayan

public class T{

private A a;

private B b;

private static final C C0 = new C();

private static final C C1 = new C();

// · · ·
@Test public void t1(){

f(a);

b = new B(a);

final TM.T t = b.g(C0);

assertNotNull(t);

assertThat(t.a(), is(C1));

assertThat(t.c(), is(C2));

assertThat(t.i(), is(C3));

assertThat(t.n(), is(C4));

assertThat(t.g(), is(C5));

assertThat(t.o(), is(C6));

}

@Test public void t2(){

if(A.x == A.y)

assertTrue(true);

else

assertTrue(false);

}

// More @Test methods

}

Figure 1: Junit @Testmethodswithmultiple checking points

i.e. multiple assertions

concept, for example, consider method t2() at Fig. 1 which is a

decomposition of a single assertion. The importance of this princi-

ple rises the following research question:

RQ1:What percentage of Junit tests follow the single check

point principle?

2.2 Test Structure

A common logical structure of unit tests follows the scheme [6] of:

Arranдe → Act → Assert

Arrange all the necessary preconditions and test inputs,

Act by preforming a manipulation over a method or an object,

Assert that the expected result occurred.

This scheme of writing tests clearly separates what is being

tested from the setup and verification steps, and also helps keeping

the single checkpoint principle by making preforming of too many

assertions at once to be harder. However, Repeating the arrange, act,

assert scheme more than one time in a scope of a method violates

the single checkpoint principle.

Another property of tests is their linearity, i.e, whether or not

they contain complex flow control structures such as loops, condi-

tion statements, return statements ect. Keeping tests linear produce

more readable and maintainable tests.

RQ2:What percentage of Junit tests follow the arrange, act,

assert scheme?What are the common structures for Junit tests?

2.3 Using the Right Assertion

Using appropriate assertions proved to have strong correlation with

the test suite effectiveness [12]. Junit offers more than ten different

kinds of assertions for various common purposes. Using the wrong

assertion and avoiding error messages harms the comprehensibility

of the tests suite. A solution might be adding assertion messages, as

well asmaking sure to use themost suitable assertion for the test. An

example of using the wrong assertion might be: assertTrue(a==b)

instead of assertEquals(a,b): using the latest assertion produce

more readable code and also produce more relevant error mes-

sage. In fact, the usage of assertTrue and assertFalse produce

the same error message as of the regular Java assertion, which in

practise does not provide any meaningful information.

Appropriate assertions makes the test code more readable and

maintainable. Hamcrest, which is relatively new extension of Junit

provides fluent-api style assertions which are easier to follow by

programmers.

RQ3: What is the distribution of usage of different kinds of

Junit assertions?

3 RESEARCH METHODOLOGY

We introduce a static analysis technique for analysing of large

corpuses of code. For each corpus, we traverse over all projects

within it, and in each project traverse over all its Java files. Each

Java file is translated into an AST, and during a traversal over the

AST, patterns are recognized. Finally, all the data is stored in a CSV

file for a further analysis.

The AST analysis is based on work done by the author and other

over the Spartanizer and Athenizer projects [4]. An overview of

our analysis methodology is described using Fig. 2.

Currently, our analysis supports Junit tests [1]. Junit is the most

popular Java testing framework, and studies show that nearly 97%

of the Java projects use Junit at a certain point during their life-

time [11].

4 RESULTS

The research methodology has been applied over the Qualitas cor-

pus [9] containing 112 Java systems1 2. After filtering of other

testing frameworks, we found that 70 out the 112 projects use Junit

as their testing framework. This is a clear indication for the popu-

larity of Junit. In total, we analysed 140,146 Java files with 55,848

Junit tests.

The rest of this section provides answers to the research ques-

tions based on the Qualitas analysis.

RQ1:What percentage of Junit tests follow the single check

point principle?

Fig. 3 shows a diagram of the number of test methods categorized

by the number of assertions within them.

As can be seen, 61% of the testing methods detected violate

the single checkpoint principle, meaning they contain more than a

single assertion per method. In addition, 18% of the methods contain

six assertions or more. This results indicate that many tests tend to

be long and complex and in fact, violate the isolation principle that

unit tests provide.

1A full description of the code can be found at http://qualitascorpus.com/docs/
catalogue/20130901/index.html
2We used version 20130901 of Qualitas

34

TheQuality of Junit Tests SQUADE’18:, May 28, 2018, Gothenburg, Sweden

Code Corpus

Trversal

Projects

& Extract

Classes

Class
AST

Traversal
Data.csv

Figure 2: Methodology Overview

�

����

����

����

����

�����

�����

�����

�����

���
���
��	

�

���
���
��	

��

��
���
��	

��

���
���
��	

��

���
���
��	

��

��
���
���
�	

��

�	

��

�
��
��
��
���

��
��
��

�������������
����	����
��������	
��

Figure 3: Diagram of the number of test methods catego-

rized by the number of assertions within them.

For checking methods with multiple assertion who follow the

single checkpoint principle, we manually checked 1,000 testing

methods from the corpus with more than one assertion and found

non of them to follow the single checkpoint principle.

RQ2:What percentage of Junit tests follow the arrange, act,

assert scheme?What are the common structures for Junit tests?

For well defined exploration of test structures, we introduce a tax-

onomy for test structures which is based on regular expressions,

for example, consider the following expressions over group X:

X Represents exactly one occurrence of items from X.

X
∗ Represents at least zero occurrences of items of X.

X
+ Represents at least one or more occurrences of items of X.

We define those regular expressions over the following 2 groups:

F the fixtures group, contains all the commands within tests

which are not assertions, and

A the assertions group, contains all the assertion command

within a test.

For example, representing the arrange, act, assert scheme using our

taxonomy is done using:

F ∗A∗

and for representing the single checkpoint principle is done using:

F ∗A
This taxonomy represents only linear tests. Linear tests are test

methods which do not contain any complex control structure within

them, but instead, a sequence of commands and assertions which

are executed in sequential order. As mentioned, linear tests are

more readable and maintainable. As a first stage, we filtered all the

non-linear tests and found that nearly 31% of the entire tests are

non-linear. Table 1 shows the prevalence of different structure of

tests within the Qualitas corpus.

Table 1: Taxonomy of tests and their prevalence in Qualitas

Algebraic Form. Qualitas

A 2.6%

F 12.7%

A+ 5.2%

F+ 25.9%

FA 3.3%

F+A 13.2%

FA+ 5.3%

F+A+ 22.1%

Non Linear 30.7%

Note that the percentages in the table are calculated from the

total number of tests, including the non-linear tests. Also, note

that there are few patterns which are sub-patterns of others, for

example, F is a sub-pattern of F+.
A significant percentage of methods match the pattern F+, which

means that in practise, they do not contain any Junit assertion. The

reason is that apparently, there aremany test methodswhich use the

general framework of Junit excluding the Junit assertion and instead,

use their own customized assertions. The current methodology

doesn’t recognize such methods and they require a further research

in the future.

Only 13% of the methods follow the arrange, act assert scheme,

and more than 12% of the methods (excluding the non linear meth-

ods) contain a mixture of fixtures and assertions which might lead

to low readability and maintainability of these methods.

As mentioned, 31% of the tests are non-linear, from those tests,

we found that 13% contains loops (for statements and while state-

ments), 16.5% contains try-catch statements (Although Junit al-

lows declare throwed exception for each testing methods), and 15%

contains if statements.

RQ3: What is the distribution of usage of different kinds of

Junit assertions?

Fig. 4 shows a graph of the distribution of Junit assertion within

the Qualitas corpus, grouped by different kinds of assertions:

The most popular assertion in Qualitas is assertEquals which

takes nearly 50% of the total assertions.

35

SQUADE’18:, May 28, 2018, Gothenburg, Sweden Dor D. Ma’ayan

�����������	
���� ������	
���� �������
�	
���� �������
�����

�������
����� ���������� ���������� ����������

����������� ��	�

����������	
�	���������	
�

�

�������������
 �

��������
 �

����
������
 �

����
�����

�

����
����� �

������� �

������� �

�������

�

������
� ��	�

����������	
�	���������	
�

Figure 4: Graph of the distribution of Junit Assertions in the

Qualitas corpus, grouped by different kinds of assertions

Asmentioned, the Hamcrest framework provides better assertion

messages using a fluent api style. It uses assertThat assertion

containing a matcher. However, less then 0.3% of the assertions

are Hamcrest assertions. Another popular assertion is assertTrue.

Using assertTrue and assertFalse without a user defined error

message is considered a bad practise since the default error message

of the test does not provide any indication for the reason of failure.

Out of all assertTrue and assertFalse assertions in Qualitas,

77% doesn’t contain any customized error message. This indication

by itself gives a strong motivation for auto generation of error

messages with dedicated tools.

5 THREATS TO VALIDITY

The main threat to the validity of our results is the corpus. We

used the latest version of the Qualitas corpus, which is dated back

to 2013. New frameworks and automation techniques might have

been introduced since then and affect the results. For example, we

assume that the Hamcrest framework gained significant popularity

since 2013.

This paper describes preliminary results on the usage of Junit,

any other testing framework was filtered out. In addition, we have

found that many systems use the general framework of Junit with

their own assertion methods which are more domain-specific. Con-

sidering these user defined assertions in the analysis might change

the results in an unpredictable way.

6 RELATEDWORK

Empirical study of tests has increasing interest lately with multiple

works address similar questions. Gonzalez et.al. [5] preformed a

large scale empirical research over 4 testing patterns and found that

only 24% of the projects implement pattern that could help with

maintainability. Zerouali et.al. [11] explored the usage of different

testing framework. Kochar et.al. also conducted a large-scale study

on tests [7] using 20,817 GitHub projects. They studied the correla-

tions between different statistics such as the number of contributors,

the project size, and also the relationship between programming

languages to the number of test cases in a project. Our work looks

with finer granularity over test methods in terms of structure and

API usability.

7 CONCLUSION

This paper explores how Junit tests are written in real world soft-

ware systems. We preformed a static analysis over the Qualitas

corpus and found that significant part of the testing methods do not

follow the recommended practices for writing unit tests. These early

results might demonstrate the importance of automation tools and

the need for refactoring techniques for unit tests. As a future work,

we plan to reproduce our results over a bigger and more up-to-

date Java corpus, extend the research for more testing frameworks,

and trying to find correlations between our results to traditional

testing metrics such as code coverage by tests.

Acknowledgements I thank my advisor, Prof. Joseph Gil from

the Technion for his professional guidance and help. I also thank my

colleague, Ori Roth for his help reviewing this work and making it

better. The financial support of the Technion is also appreciated.

REFERENCES
[1] Sujoy Acharya. 2014. Mastering Unit Testing Using Mockito and JUnit. Packt

Publishing Ltd, Birmingham, UK.
[2] Ken Arnold and James Gosling. 1996. The Java Programming Language. Addison-

Wesley Publishing Company, Reading, MA.
[3] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.

When, How, and Why Developers (Do Not) Test in Their IDEs. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2015). ACM, New York, NY, USA, Article 1, 12 pages. https://doi.org/10.1145/
2786805.2786843

[4] Yossi Gil, Dor Ma’ayan, Niv Shalmon, Raviv Rachmiel, and Ori Roth. 2017. Syn-
tactic Zoom-Out/Zoom-In Code with the Athenizer. In Software Visualization
(VISSOFT), 2017 IEEE Working Conference on. IEEE, IEEE, Piscataway, NJ, USA,
124–128.

[5] Danielle Gonzalez, Joanna C. S. Santos, Andrew Popovich, Mehdi Mirakhorli,
and Mei Nagappan. 2017. A Large-scale Study on the Usage of Testing Patterns
That Address Maintainability Attributes: Patterns for Ease of Modification, Diag-
noses, and Comprehension. In Proceedings of the 14th International Conference on
Mining Software Repositories (MSR ’17). IEEE Press, Piscataway, NJ, USA, Article
1, 11 pages. https://doi.org/10.1109/MSR.2017.8

[6] Jeff Grigg. 2012. Arrange Act Assert. http://wiki.c2.com/?ArrangeActAssert.
(2012).

[7] Pavneet Singh Kochhar, Tegawendé F Bissyandé, David Lo, and Lingxiao Jiang.
2013. An empirical study of adoption of software testing in open source projects.
In Quality Software (QSIC), 2013 13th International Conference on. IEEE, IEEE,
Piscataway, NJ, USA, 103–112.

[8] Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion, London, UK.

[9] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. 2010. Qualitas Corpus: A Curated Collection
of Java Code for Empirical Studies. In 2010 Asia Pacific Software Engineering
Conference (APSEC2010). IEEE, Piscataway, NJ, USA, 336–345. https://doi.org/10.
1109/APSEC.2010.46

[10] Arie Van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok. 2001.
Refactoring test code. In Proceedings of the 2nd international conference on extreme
programming and flexible processes in software engineering (XP2001). ACM, New
York, NY, 92–95.

[11] Ahmed Zerouali and Tom Mens. 2017. Analyzing the evolution of testing li-
brary usage in open source Java projects. In Software Analysis, Evolution and
Reengineering (SANER), 2017 IEEE 24th International Conference on. IEEE, IEEE,
Piscataway, NJ, USA, 417–421.

[12] Yucheng Zhang and Ali Mesbah. 2015. Assertions Are Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA,
Article 1, 11 pages. https://doi.org/10.1145/2786805.2786858

36

View publication stats

https://www.researchgate.net/publication/326471588

