Evolution-Aware Heuristics for
GR(1) Realizability Checking

Dor Ma’ayan Shahar Maoz
Tel Aviv University Tel Aviv University
Israel Israel

Abstract—Reactive synthesis is an automated procedure to ob-
tain a correct-by-construction reactive system from its temporal
logic specification. Despite significant research progress over the
past few decades, reactive synthesis is still in its early stages
of practical adoption. One significant barrier to using reactive
synthesis outside academia is the long realizability checking and
synthesis time of specifications.

This paper introduces a novel, evolution-aware approach for
realizability checking. Our approach leverages the key observa-
tion that realizability checking is an operation that developers
frequently perform during iterative specification development;
therefore, utilizing intermediate data from previous realizability
checks can substantially improve running times. Our approach
computes a local semantic diff between previous and current
versions of the specification, and, based on the diff and the
previous realizability checking result, applies a set of sound
heuristics. These heuristics reuse intermediate data collected dur-
ing the previous specification’s realizability checking to accelerate
the current specification’s realizability checking. Our evaluation
demonstrates that these heuristics are applicable in 70% of cases
from a real-world dataset containing thousands of specifications,
and that their application significantly improves the running time
of realizability checking.

I. INTRODUCTION

Reactive synthesis is an automated procedure to obtain
a correct-by-construction reactive system from its temporal
logic specification [30]. Rather than manually constructing
an implementation of a reactive controller and using model
checking to verify it against a specification, synthesis offers
an approach where a correct implementation is automatically
obtained for a given specification, if such an implementation
exists. Given the promise of correct-by-construction systems,
much research progress has been achieved over the last two
decades on reactive synthesis theory, algorithms, tools, and
applications [4], [6], [16], [20], [21].

Despite all this research progress, one of the remaining
significant bottlenecks of reactive synthesis, even for frag-
ments of LTL such as GR(1) [5], is the long synthesis and
realizability checking time for large specifications. Previous
studies show that as the specification grows, running times can
be considerable [18], making reactive synthesis challenging
for real-world cases. This finding is not surprising considering
that the fixed-point algorithm for the realizability checking of
GR(1) specifications can be solved in time of O(N?) where
N is the size of the state space of the specification.

A key observation from previous studies [18], [19], [32]
is that specifications should be developed in an incremental,

Jan Oliver Ringert
Bauhaus University Weimar
Germany

iterative process, involving frequent realizability checking for
synthesizing intermediate versions of the specification and for
conducting various analyses that involve realizability checks.
This observation raises the question of whether using data
retrieved from the previously analyzed version of the
specification can lead to performance gains in the running
time of realizability checking for the current version.

This paper proposes novel, sound evolution-aware heuristics
for faster realizability checking of GR(1) reactive synthesis
specifications. The heuristics are based on the realizability
checking results of the previous version of the specification,
the diff between the previous version of the specification and
its current version, and intermediate data that was retained
during the realizability checking of the previous specification.
It is important to note that our approach is sound and never
gives a wrong answer. Nevertheless, we use the term heuristics
because (1) our approach is not always applicable and (2) is
not always better than the default approach.

An essential component for evolution-aware heuristics is
the ability to compute the diff between two versions of a
specification. Therefore, we introduce a novel, local seman-
tic differencing algorithm that can detect strengthening and
weakening at the granularity of assumptions and guarantees.

We have implemented and evaluated our heuristics on a
large corpus of specifications that includes more than 3,000
pairs of specifications (v; and vs), that were recorded in a real-
world specification development process by users. The results
show that our proposed heuristics are applicable in 70% of
the cases and that in most of the cases, the heuristics improve
realizability checking running times significantly.

In summary, this paper makes the following contributions:

o Local Semantic Specification Diff. We present an algo-
rithm that computes a local semantic diff between two
GR(1) specifications.

o Evolution-Aware Heuristics. We introduce novel
evolution-aware heuristics for realizability checks of
GR(1) specifications and implement them on top of
Spectra. We show that the cases where the heuristics are
applicable are prevalent and that they reduce realizability
checking times significantly.

o Reproducibility. We make the implementation, dataset,
evaluation scripts, and analysis available as an artifact.

II. PRELIMINARIES AND RELATED WORK

We provide necessary background on GR(1) and Rabin(1)
synthesis and on Spectra, with references to relevant papers
for details and complete formal definitions. We also discuss
related work on performance heuristics for GR(1) and on diff-
based and incremental analyses.

A. GR(1)

LTL formulas can be used as specifications of reactive
systems, representing a 2-player game between an environment
player and a system player [5]. Atomic propositions in such
games are interpreted as environment (input) variables X’ and
system (output) variables). An assignment to all variables
is called a state, which can be represented as a tuple (X,Y),
where X C X and Y C) are the assignments of environment
and system variables resp. in that state. A transition between
states occurs when the environment player assigns values to
the input variables, which is then answered by the system
player assigning values to the output variables. A play is a
sequence of states, which can be infinite or finite, if it reaches
a deadlock for one of the players, i.e., a state from which the
player has no legal assignment to its variables.

Since LTL synthesis is computationally expensive
(2EXPTIME-complete [30]), authors have suggested LTL
fragments with more efficient synthesis algorithms. One such
fragment is GR(1) [5], whose expressive power covers most
of the well-known LTL specification patterns [8], [21]. GR(1)
specifications include assumptions and guarantees about what
needs to hold on all initial states, on all states and transitions
(safety), and infinitely often on every run (justice). A GR(1)
specification consists of the following elements [5]:

e X and Y are disjoint sets of input and output variables
controlled by the environment and the system, resp.;

e ¢ is an assertion, i.e., a propositional logic formula, over
X characterizing initial environment states;

e 67 is an assertion over V = X U Y characterizing initial
system states;

e p° is an assertion over V U X’, with X’ a primed copy
of variables &’; given a state, p°© restricts the next input;

e p° is an assertion over VUV, with V' a primed copy of
variables V; given a state and input, p°® restricts the next
output;

o Jici , is a set of assertions over V for the environment
to satisfy infinitely often (called justice assumptions);

o Jici. m is a set of assertions over V for the system to

J
satisfy infinitely often (called justice guarantees).

GR(1) Realizability: A GR(1) specification is strictly real-
izable iff the following LTL formula is realizable:

bsr =(0c — 05) A (0 — G((Hpe) = ps))

A0 AGpe = (N\GFIE— N\ Ry D
i=1 j=1

GR(1) realizability can be checked using the 3-nested fixed-
point algorithm shown in Alg. 1 from [5]. The algorithm

utilizes p calculus [15], by evaluating a formula with 3-nested

Algorithm 1 GR(1) game algorithm [5] to compute system
winning states Z

1: Z = TRUE

2: while not reached fixed-point of Z do

3 for j =1 to |J°| do

4: Y = FALSE

S: while not reached fixed-point of Y do

6: start = J N @Z Vv @Y

7 Y = FALSE

8: for i =1 to |J¢| do

9: X = Z //better approx. than TRUE, see [5]
10: while not reached fixed-point of X do
11: X = start vV (~Jg ANX)
12: end while
13: Y=YVX
14: end for
15: end while
16: zZ=Y
17: end for
18: end while

return Z

fixed-point computations. These computations evaluate to the
set of states from which the system can always eventually
satisfy its justice guarantees, or from which the system can
eventually always prevent the satisfaction of the environment’s
justice assumptions. It relies on the controlled-predecessor
operator {3S computing states from which the system p° can
force the environment p° to states in .S. The realizability check
of a GR(1) specification computes the system winning states Z
(Alg. 1) and checks whether for all initial environment states
(6°) there exists an initial system state (6°) in Z.

B. Rabin(1) Game

Some of our heuristics require playing a Rabin game [31]
instead of a GR(1) game. Rabin(1) game is the dual game
for GR(1), as it computes the environment winning states
instead of the system winning states; therefore, the realizability
checking algorithm of Rabin(1) game is symmetric to Alg. 1.
As such, it also includes 3-nested fixed-point computations.
However, while the GR(1) algorithm is initialized with a
system winning states set of TRUE (all the states), the
Rabin(1) game realizability checking algorithm is initialized
with an empty environment winning states set FALSE. A
detailed algorithm can be found in [14], [25].

C. Spectra

We implemented our heuristics over Spectra'. Spectra [23]
is a specification language and a synthesis environment that
includes a GR(1) synthesizer. It extends GR(1)’s Boolean vari-
ables to finite-type variables, e.g., enumerations and bounded
integers. Beyond GR(1) synthesis with several performance
heuristics [10], [28], it includes language extensions that are
reduced into GR(1), e.g., patterns [21] and triggers [2], as
well as several analyses beyond realizability checking, e.g.,
well-separation detection [11], [22] and cores and repairs
for unrealizable specifications [24], [27]. Although our diff
algorithm and heuristics are generic for every GR(1)

I'Spectra is available from https://github.com/spectrasynthesizer

https://github.com/spectrasynthesizer

specification language, we chose to implement them over
Spectra since it is a mature reactive synthesizer and
since it comes with a large corpus of specifications for
evaluation. Since 2015, Spectra has been used by hundreds
of final-year CS undergrads in semester-long project classes,
specifying and executing robotic and other systems, resulting
in the SYNTECH collection of specifications.

D. Performance Heuristics for GR(1)

Previous work has suggested performance heuristics for
GR(1). Firman et al. [10] presented a list of heuristics to
potentially accelerate GR(1) synthesis and related algorithms.
The list includes several heuristics for controlled predecessor
computation and BDDs (Binary Decision Diagrams), early
detection of fixed-points and unrealizability, fixed-point recy-
cling, and several heuristics for unrealizable core computa-
tions. These heuristics are implemented in Spectra.

Recently, Yatskan et al. [35] showed additional performance
heuristics for GR(1), including discarding intermediate mem-
ory not required for many GR(1) algorithms, and improving
the embedding of finite automata into GR(1) when supporting
advanced language constructs like patterns and triggers.

Our work is very different than the above two, since our
heuristics are evolution-aware. Our work complements these
prior efforts, and does not aim to replace them.

E. Diff-based and Incremental Analyses

The formal methods literature includes work on incremental
analyses. Most prominently, incremental SAT/SMT solving
leverages previously learned information to efficiently solve
a sequence of related SAT/SMT problems. Instead of solving
each problem independently, an incremental solver retains
state and reuses insights from earlier problem-solving stages.
This approach has been applied to automated planning, lazy
SMT solving, symbolic execution, and bounded model check-
ing, and is supported by many solvers, see, e.g., [7], [9]. As an
example, Beyer et al. [3] store and reuse abstraction precisions
between consecutive model checking runs. To evaluate their
approach, they created a dataset comprising industrial verifi-
cation problems derived from 62 Linux kernel device drivers,
with 1,119 revisions at the granularity of a Git commit.

Li et al. [17] proposed incremental analysis for consecutive
Alloy models. They collected data on consecutive versions
by instrumenting the Alloy analyzer. They exploit incremental
SAT solving and the delta between two model versions.
An interesting related work suggests incremental analysis of
evolving Alloy Models [34]. Like our work, this work does
not rely on the incremental analyses enabled by SAT or SMT
solvers. The work statically analyses the impact of the change
and uses memoization to enable solution reuse. It is evaluated
on 24 mutated models and on 36 faulty models that have been
repaired, demonstrating reductions in analysis times.

In contrast to the above, our work focuses on GR(1) real-
izability checking. Therefore, our heuristics address elements
not present in SAT/SMT or symbolic model checking, i.e.,
temporal constraints of system and environment players, and

GR(1)-specific semantics — captured in our local diff algo-
rithm. Moreover, another novelty of our work is in relying on
the granularity of tool interaction of specification development
for detecting that a computation from scratch is not necessary
for GR(1) realizability checking. We further provide an empiri-
cal evaluation based on thousands of GR(1) specifications with
real, fine-grained version data. To the best of our knowledge,
no existing LTL or GR(1) synthesizer supports any form of
incremental synthesis.

III. PROBLEM STATEMENT AND SOLUTION OVERVIEW

This section describes the problem we aim to solve and
provides an overview of our approach.

Consider an original specification (denoted as v;) and an
evolution specification (denoted as v3). The evolution specifi-
cation is based on v1, with some modifications made by the
developer, which are represented by a diff. Our goal is to
compute the realizability of v, more efficiently than the
traditional realizability checking algorithm by leveraging
both the diff between the specifications and intermediate
data collected during the realizability checking of v;.

To achieve this, we introduce a set of evolution-aware
heuristics. These heuristics are based on three key elements:
(1) the realizability checking result of v, (2) the diff between
v; and vo, and (3) intermediate data retrieved during the
realizability checking of v;.

Fig. 1 illustrates an overview of our approach. Initially, the
developer performs a realizability check on v;; we store both
the result and relevant intermediate data from this compu-
tation on disk. Subsequently, when the developer performs
a realizability checking on an evolution of v; with some
modifications, we first compute the difference between v
and vo. Based on this diff and the realizability checking
result of vy, identify and apply an appropriate heuristic for
checking the realizability of vy. This heuristic may either
return a realizability checking result immediately, or utilize the
intermediate data retrieved during the realizability checking
of v;. Finally, we store the realizability checking result of v
on the disk, together with relevant data for the realizability
checking of the next evolution.

The remainder of this paper is organized as follows. Sect. IV
presents how we compute a diff between two versions of
the specification, Sect. V describes our heuristics, Sect. VI
presents the evaluation, and Sect. VII concludes.

IV. LOCAL SEMANTIC DIFF

Since our heuristics are based on the evolution of specifica-
tions over time, it is essential to properly define and compute
the diff between two versions of the specifications. A simple
diff might be syntactic, e.g., describing certain assumptions
or guarantees that were added or removed. However, such
syntactic diff has many limitations that make it not a good
fit for our purpose. We therefore present a semantic diff.

The following subsection presents our definition of a seman-
tic diff and an algorithm for computing it. Subsection IV-C
presents an extension of our approach to handle language
features that introduce auxiliary variables.

[

Realizability

@ Intermediate Data

</>

Checking

Original Specification

@ Realizability Checking Result>

(v1)

[

Y
®

</>

Diff Computation
Evolution Specification

(v2)
.

Heuristic Detector

Evolution-Aware
Realizability
Checking

@ Intermediate Data)
@ Realizability Checking Result>

Fig. 1: Evolution-Aware Realizability Checking - Overview

A. Basic Local Semantic Diff

We define PlayerModule as the respective assertions
0,p,J = {J,}),_,) of the environment player, e.g., ¢,
and the system player, e.g., 6°, as defined in each GR(1)
specification (see II-A).

We define a semantic diff between two PlayerModules to be
a vector of Boolean values (1(9), 1(0),1(p),4(p), T(J),L(J))
that describes whether initial, safety, and justice assertions in
the first PlayerModule were strengthened (denoted as 1()) or
weakened (denoted as J()) in the second PlayerModule.

Algorithm 2 computes a local semantic diff of two Play-
erModules. It takes as input two PlayerModules, one from
the original specification (denoted as v;) and one from the
evolution (denoted as v3), and outputs the diff between them.

The algorithm checks whether there are constraints in initial
and safety assertions of the v; PlayerModule that are not in
the vo PlayerModule, and vice-versa (Alg. 2, lines 1-4). Then,
the algorithm checks whether any justice assertion in vy is
not implied by a justice assertion in vy (1l. 7-19), i.e., whether
justice assertions were weakened. Notice that weakened could
mean removal or that a modified, but not strengthened version
exists in vy (not satisfying 1. 10). Finally, it checks whether
any justice assertion in wve has no justice assertion in v
that it implies (ll. 20-32), i.e., whether justice assertions
were strengthened (added or modified and not weakened).
Intuitively, for J,, = J,, all justices are implied and the
algorithm reports —|.(J) and —1(J).

Note that in our definitions, the diff may indicate that initial
assertions were both strengthened and weakened (and similarly
for safety and justice assertions). Also, “not strengthened”
means “weakened or not changed”, and so “not strengthened”
and “not weakened” together mean “not changed”.

All the logical operations in the algorithm are performed
symbolically using BDDs. Note that these include only basic
logical operations and none that require quantification. Also
note that the algorithm should run twice to compare two spec-
ifications: once to compare the v; and vy system PlayerMod-
ules, and once to compare their environment PlayerModules.

Algorithm 2 Computing GR(1) PlayerModule Diff

Ju Ju
{J;tjl}ln—i‘% (Ovg s pug, Joy = {JSQ}‘ 2|>

n=1

Input: (0v,, pvy, Jo; = =
Output: (1(8). 1(6), (o), 1(). T, L(T))
2 10) = (0v; A0y, # FALSE) // Initial assertion strengthened?
1 1(0) = (0uvy A0y, # FALSE) // Initial assertion weakened?
: 1(p) = (pvy A —puy # FALSE) // Safety assertion strengthened?
1 1(p) = (puy A —pv, 7# FALSE) // Safety assertion weakened?
: 1(J) = false
: L(J) = false
for i =1 to |Jy, | do
implied = false
for j =1 to |Jy,| do
10: if (J;2 — J;1) = TRUE) then
11: implied = true // satisfying J;Q satisfies J;*
12: break
13: end if
14: end for
15: if =implied then // JZ.U 1 not covered by any justice assertion in v
16: L(J) = true // Justice assertions weakened
17: break
18: end if
19: end for
20: for i =1 to |J,,| do
21: implied = false
22: for j =1 to |Jy, | do

23: if (J;.)1 — J;?) = TRUE then

24: implied = true // satisfying J;-Il satisfies Jiv 2

25: break

26: end if

27: end for

28: if ~implied then // sz not covered by any justice assertion in vy
29: T(J) = true // Justice assertions strengthened

30: break

31: end if

32: end for

B. Soundness, Locality, and Complexity

Alg. 2 is sound in the sense that it returns a correct diff for
every input of two PlayerModules. However, our diff technique
operates with inherent locality — it examines initial, safety,
and justice assertions of a given PlayerModule independently,
without considering the overall semantics of the specification.
This locality has important implications for the algorithm’s
completeness: while it identifies all direct syntactic and single-
element semantic relationships, it may not capture complex
semantic implications that arise from interactions between
multiple elements. For instance, a new justice assertion might

be implied not by any single original justice assertion but
by the combined effect of two or more justice and some
of the safety assertions (this would be a case of inherent
vacuity as defined for GR(1) in [26]). Thus, the local nature of
the algorithm may result in the identification of stricter diffs
than what would be observed when analyzing the complete
specification semantics. Importantly however, this strictness
does not compromise the correctness of our heuristics (which
we will present in Sect. V) but only may, in some cases, lead
to scenarios where applicable heuristics go undetected.

While it is theoretically possible to compute a diff that
captures the complete semantics of the entire specification
(e.g., checking whether all system winning strategies for v; are
also winning for v5), this would be at least as hard as checking
GR(1) realizability and require a different representation.
Greimel et al. [12] presented a cubic algorithm (same number
of fixed-points as GR(1) realizability, but a larger state space
(union of variables)) for a global refinement relation. So while
it might be possible to develop further heuristics, a complete
handling without incurring prohibitive overhead is impossible.
Indeed, under the common assumption that basic BDD logical
operations take a constant time, the complexity of computing
the diff using Alg. 2 is only O(|J,, | * |J,,|) where |J,,| and
|.Ju,| are the number of justice assertions in specifications v;
and v, respectively.

C. Computing Local Semantic Diff between Specifications
with Advanced Language Features

While Alg. 2 functions effectively for pure GR(1) speci-
fications, specification languages such as Spectra incorporate
advanced language features, including patterns and triggers,
whose (automatic) translation into GR(1) introduces auxiliary
variables. These variables are not explicitly defined by the
specification developer but nevertheless significantly influence
the overall specification semantics.

In order to correctly compare these language features at the
BDD level in Alg. 2, we need to establish a mapping between
auxiliary variables in v; and their corresponding variables in
vg, allowing us to replace auxiliary variables in v; with their
vg counterparts in the assertions compared by Alg. 2. Our
mapping approach examines the behavioral characteristics of
each variable pair by comparing their associated BDDs across
initial, safety, and justice assertions. When these behavioral
signatures match, we replace corresponding BDD variables in
all assertions of the PlayerModule (6.,,, pu,, Ju, = {J32 }‘,;’jﬁ)
with those of specification v;. This mapping technique enables
our diff algorithm to handle advanced language features while
maintaining its semantic analysis capabilities. The matching
of auxiliary variables is correct as their values are completely
and deterministically defined by exactly one language element
(the one introducing that variable). Even if two different
language elements translate to equivalent initial, safety, and
justice assertions, these would be identified at the BDD level.
Note that the BDD structure and ordering of variables are not
an issue for the matching, as the BDDs of v; and w9 are loaded
into the same BDD engine instance.

V. EVOLUTION-AWARE HEURISTICS

This section presents our evolution-aware heuristics. Each
heuristics gets as input whether v; was realizable or not, the
winning states Z of v;, and the local diff between v; and v
that was computed using the algorithm described in Sect. IV.

We present two categories of heuristics: simple and ad-
vanced. The simple heuristics (Sect. V-B) are immediate and
do not require any fixed-point computation, while the advanced
heuristics (Sect. V-C) reduce the fixed-point problem of GR(1)
synthesis into a smaller one.

A. What Do We Keep on the Disk?

Our heuristics leverage data from prior realizability checks
that are persisted to disk. For each realizability checking
operation, we store the following essential data:

o Realizability checking result. We persist a Boolean
value indicating whether the specification is realizable or
unrealizable.

o Copy of v;. We maintain a complete textual represen-
tation of the original specification v;. This enables us to
load it during evolution-aware realizability checking and
compute the semantic diff between v; and the evolution
specification.

o The value of Z for vy. Z represents the set of winning
states for the system (see Alg. 1) — specifically, states
from which the system has a strategy to ensure all runs
will satisfy the specification. Since Z is represented sym-
bolically using a BDD, we serialize and store this BDD
structure on disk for subsequent retrieval and analysis.

This persistent storage strategy allows our evolution-aware
approach to access critical intermediate data from previous
realizability checks without recomputing it.

B. Simple Heuristics

The simple heuristics do not require running the fixed-point
algorithm and can immediately return whether the evolution
specification vy is realizable based solely on the realizability
checking result of v; and the diff between v; and vs. The
design rationale for these heuristics was guided by mono-
tonicity of the GR(1) winning states computation based on
strengthening and weakening of assumptions and guarantees.

Table I presents the simple heuristics cases. Each row
describes a heuristics case; the columns describe whether
the original specification was required to be realizable, the
required diff between the original and evolution specifications,
and the realizability result for such a case.

The first simple heuristics (S1) applies when there is no
semantic difference between v, and vs. It includes cases where
the two specifications are syntactically the same and, more
interestingly, cases where the specifications are not syntac-
tically the same but based on our diff are semantically the
same. In these cases, there is no need to perform realizability
checking again, and the realizability of v, is defined to be the
realizability of v.

TABLE I: Simple Heuristics — avoid running the GR(1) fixed-point algorithm

No. w1 Real? Required Local Semantic Diff v2 Real?
si xve o JUEOVIE) VIO V%) VY VIPT) VY Ve) VI VW) VI VIIT) L peal
No Diff
2 X C D) V) V(%) VL7 VI VLT p
Gar strengthened and/or asm weakened
s3 y C DO VO Ve V(o7 V U VL) v
Asm strengthened and/or gar weakened
Theorem 1 (Correctness S1). Given specifications vi and Proof. Analogous to the proof for S2 in Thm. 2. O

vy Where the output of Alg. 2 matches the required diff of
heuristics S1, the result in Table I is correct.

Proof. Alg. 2 determined for the equivalence of initial and
safety assertions of v; and vy (Alg. 2, 1. 1-4) and found
a complete pairwise matching of identical justice assertions
(Alg. 2, 1. 10 and L. 23). The result of Alg. 1 on ve must
correspond to the result of Alg. 1 on v;. O

The second simple heuristics (S2) applies when v; is un-
realizable and v only strengthens guarantees and/or weakens
assumptions. In such cases, vy would be unrealizable since
the relationship between the system and environment has not
changed in a way that would affect its realizability.

Theorem 2 (Correctness S2). Given specifications v, and
vy Where the output of Alg. 2 matches the required diff of
heuristics S2, the result in Table I is correct.

Proof. Realizability requires that for all initial environment
states (6°), there exists an initial system state (6°) in Z. Due
to —1(0°), i.e., more or equal initial environment choices,
and —(6%), i.e., less or equal system choices, vy remains
unrealizable for equal or smaller Z values computed by Alg. 1.
Due to —=1(p°) and —)(p®) the application of S to any S
always yields a smaller or equal set of states in ve than in
v1, 1.e., X (union in Alg. 1, I. 11) is smaller in vy making Y
(union in Alg. 1, I. 13) and thus Z (Alg. 1, 1. 16) smaller in vs.
Due to —)(J?®), the loop in Alg. 1, 1l. 3-17 may be repeated
with an additional or a strengthened justice guarantee reducing
the states start in Alg. 1, 1. 6 and thus Z. Due to —1(J¢), the
loop in Alg. 1, 1. 8-14 may be reduced, reducing the union
of Xsin Alg. 1, 1. 13 and thus Y and Z; or in case a justice
assumption is weakened, its negation represents a smaller set
of states in Alg. 1, 1. 11 reducing also X, Y, and Z.]

The third simple heuristics (S3) is dual to the second and
applies when v, is realizable and v, only weakens guarantees
and/or strengthens assumptions. In such cases, vy would
be realizable since the relationship between the system and
environment has not changed in a way that would affect its
realizability.

Theorem 3 (Correctness S3). Given specifications v, and
vy Where the output of Alg. 2 matches the required diff of
heuristics S3, the result in Table I is correct.

C. Advanced Heuristics

The goal of the advanced heuristics is to reduce the real-
izability checking problem to a simpler problem by reusing
data retrieved from the realizability checking of v; as a
starting point for the realizability checking of vs. Since the
advanced heuristics involve heavier computations compared
to the simple heuristics, they should be used only when no
simple heuristics is applicable.

Table II presents the more advanced heuristics. Each row
represents a heuristics; the columns describe whether the orig-
inal specification was required to be realizable, the required
diff between the original and evolution specifications, and a
brief description of the applied heuristics for such a case.

Again, our design rationale was to exploit the monotonicity
of the winning state computation given strengthened and
weakened assumptions and guarantees. The duality of GR(1)
and Rabin(1) provided additional cases.

The first advanced heuristics (A1) applies when v; is realiz-
able and where justice guarantees were not weakened, justice
assumptions were not strengthened, safety guarantees were not
weakened, and safety assumptions were not strengthened. In
such a case, we initialize the greatest fixed-point Z in Alg. 1
with Z,, (i.e., the system’s winning states for v;) instead
of TRUE, and return the realizability checking result of the
algorithm. Intuitively, this is correct because when we have
not weakened system constraints or strengthened environment
constraints, the winning states of vo must be a subset of the
winning states of vy (the size of Z being a greatest fixed-point
is monotonically decreasing). By initializing the algorithm
with Z,,, instead of TRUE, we expect to reduce the number
of fixed-point iterations required to reach convergence.

Theorem 4 (Correctness Al). Given specifications v, and
vy Where the output of Alg. 2 matches the required diff of
heuristics Al, then the result of Alg. 1 for vy initialized with
Z = Z,, is identical to the result of Alg. 1 for vs.

Proof. The system winning states Z in Alg. 1 are determined
by computing the greatest fixed-point Z via the least fixed-
point Y and the greatest fixed-point X. We need to show that
Z,, includes the winning states computed by Alg. 1 for v,
i.e., that it is safe to start the fixed-point iteration from Z,,
instead of TRUE. We do so by showing that the diff reduces

TABLE II: Advanced Heuristics — initialize GR(1)/Rabin(1) fixed-point algorithm from previous results

No. i Real?

Required Local Semantic Diff

Heuristics

U2 A) A 0) A H6)

Initialize the Z BDD of Alg. 1

Al v Justice gar not weakened and justice asm not strengthened . .
with Z,, instead of TRUE
and safety gar not weakened and safety asm not strengthened
T(J%) A =L(T) A T(p%) AL (p®
e I(* 2 - - (* 7)* - 7(p7)7 - 7(p7) ****** Initialize the Y BDD of a Rabin(1) Game
A2 X Justice gar not strengthened and justice asm not weakened . X .
with =Z,, , return negation of Rabin(1) result
and safety gar not strengthened and safety asm not weakened
2 (MO VLET) V(%) V 1(p%) VL pT) V L(p) V T(J%) V(T VL) vV L(JT)) ,
777777777777777777777777777777777777777 Check whether the system wins from all
A3 v All gar unchanged except ini strengthened (or equals) o .
initial states in Zy,
and All asm unchanged except ini weakened (or equals)
2 () V(07) V() V(%) V L(p%) V(%) V() VA(I) VL) V L(JT9)) . .
*************************************** Check whether environment wins from all
A4 X All gar unchanged except ini weakened (or equals)

initial states in =25,

and All asm unchanged except ini strengthened (or equals)

Z. The remaining arguments are those of the second part of
the proof of Thm. 2. O

The second heuristics (A2) applies when vy is unrealizable
and where justice guarantees were not strengthened, justice
assumptions were not weakened, safety guarantees were not
strengthened, and safety assumptions were not weakened. In
such a case, we initialize the Y BDD of the second nested
fixed-point computation in the Rabin(l) game with —-Z,,
(i.e., the environment’s winning states for v1) and return the
negation of the Rabin(1) game result. This works because
when system constraints have not been strengthened and
environment constraints have not been weakened, by starting
the greatest fixed-point Y from —Z,,,, we can more efficiently
determine if the environment still maintains its winning states
and potentially reduce the number of fixed-point iterations.

Theorem 5 (Correctness A2). Given specifications v and
vo where the output of Alg. 2 matches the required diff of
heuristics A2, the result of Rabin(l) for vo initialized with
Y = —Z,, is identical to the result of Rabin(1) for vs.

Proof. Analogous to the proof of Thm. 4 for Rabin(1). O

The third heuristics (A3) applies when v; is realizable and
all guarantees are unchanged except that initial guarantees may
be strengthened and all assumptions are unchanged except
that initial assumptions may be weakened. Here, rather than
running the full fixed-point algorithm, we check whether the
system wins from all initial states of v, in the winning states
Z,, . This suffices as the modifications to the specification only
affect the initial states, while the winning region computation
yields the same result as for v;. The fourth heuristics (A4)
applies when v; is unrealizable and all guarantees are un-
changed except that initial guarantees may be weakened, and
all assumptions are unchanged except that initial assumptions
may be strengthened. Dual to A3, we check whether the envi-
ronment wins from all initial states of v9 in the environment’s
winning states =7, . This suffices as the modifications to the

specification only affect the initial states, while the winning
region computation yields the same result as for v;.

Theorem 6 (Correctness A3 and A4). Given specifications v,
and vo where the output of Alg. 2 matches the required diff of
heuristics A3 or A4, the result in Table II is correct.

Proof. As established in the proof of Thm. 1, given the diff
patterns for A3 and A4, Alg. 1 will compute the same values
of Z for vy and v,. The check for v, whether for all initial
environment states (6¢) there exists an initial system state (6°)
in Z,, is thus sufficient for A3 (analogous for A4).]

Note that similar to how Al and A2 are duals, so are A3
and A4. The distinction is important for the computation of Al
and A2 while it is insignificant for A3 and A4 (both checks
are simple BDD operations). Also note that the restrictions
of initial assertions in A3 and A4 are not necessary for
their correctness while apparently limiting their completeness.
However, the “missing” cases of A3 are captured by S3 and
those of A4 are captured by S2.

D. Incompleteness

One source of incompleteness of our heuristics is the local
semantic diff (see discussion and example of locality in
Sect. IV-B). Due to this locality, the diff may fail to detect an
opportunity for applying a heuristics, resulting in no heuristics
being used although one could have been used, or a less
effective heuristics being chosen (e.g., selecting an advanced
heuristics instead of a simple one). Yet, this does not affect
correctness — it only impacts potential performance gains.

Another source of incompleteness is the coverage of cases
S1-S3 and A1-A4. As an example, no heuristics match a diff of
specifications where a justice guarantee is added (1(J*)) and
a justice assumption is added (1(J¢)). That said, the heuristics
never produce incorrect results.

VI. EVALUATION

We describe an evaluation of our heuristics. We first present
the research questions, then describe our evaluation dataset and

validation technique, and then present the results. Finally, we
present threats to the validity of our evaluation.

A. Research Questions

We explore the following research questions:

o RQ1: Applicability of the heuristics. What is the preva-
lence of the heuristics’ applicability in a representative
specification corpus?

o RQ2: Performance gain. What is the performance gain
of the heuristics?

o RQ3: Overheads. What are the overheads of computing
the heuristics?

B. Specification Corpus, Implementation, and Validation

Metric Patrolling Deliveries Esc. Guard Cat. Int. All

MD SD MD SD MD SD MD SD MD
#Lines 844 225 | 765 218 | 59.7 258 | 71.1 17.6 | 729
#Asm 16.6 59 8.9 3.4 6.9 3.8 9.8 4.6 10.6
#Gar 11.2 5.3 19.6 8.7 12.4 4.7 13.9 6.1 14.3
#Sys-V 1.9 0.3 5.1 2.3 1.9 0.7 4.6 1.2 34
#Env-V 9.1 34 4.2 1.5 1.8 1.1 2.4 0.5 44

TABLE III: Reporting median (MD) and standard deviation (SD)
size measurements of the final specifications. The number of lines
excludes comment lines; all the data was computed syntactically.

1) Corpus: To evaluate our approach, we used the
SPECVER?2S5 specification benchmark, a corpus of specifica-
tions developed by 11 teams of third-year computer science
undergraduates as part of a semester-long software engineering
project course [19]. The dataset includes 3,100 version pairs,
representing a complete set of snapshots taken during the de-
velopment of reactive system specifications by users. 59.16%
of the snapshots were realizable specifications, 40% were
unrealizable, and 0.84% of the snapshots resulted in a timeout
of 10 minutes while trying to compute their realizability.

SPECVER?2S is based on four different development tasks;
in total, it includes 44 different projects. The tasks are rel-
atively complex and include several interdependent features,
combining non-trivial interplay between the system and the
environment and requiring the use of both safety and justice
assertions. The tasks are inspired, in part, by common specifi-
cation examples from the literature [1], [29]. Table III reports
the median and standard deviation of the number of lines, the
number of assumptions, the number of guarantees, the number
of system variables, and the number of environment variables
of the final 44 specifications. The snapshots we collected
showed high diversity across the 44 projects, reflecting the
varied ways teams approached their tasks and engaged with
the tool. The distribution ranged from 25.5 snapshots at the
25th percentile (Q1), to 56.0 at the median (Q2), and 103.5 at
the 75th percentile (Q3).

The following paragraphs include a short description of the
development tasks:

Patrolling A robot should patrol between random target lo-
cations on a grid under several constraints about its movement.
For example, each target location may be blocked for a finite
number of steps and then eventually unblocked; when a target
is blocked, the robot should not visit it.

Deliveries Two robots should use an elevator to travel
between floors and turn off randomly located lights in some
floors. Only one robot can use the elevator at a time, and the
robots should never collide with each other. When a robot
turns off a light, a new light turns on in a different location.

Escaping Guard A robot should travel between the corners
of a grid with obstacles while ensuring that a guard that chases
it never catches it. While the guard has a size advantage
compared to the robot, the robot has the advantage to move
two steps for each step of the guard.

Catching Intruder Two robots should collaborate to catch
an intruder that tries to escape from them. The intruder enters
the grid from a random cell in the bottom row, and the robots
should block it together so that it cannot move. When the
intruder is blocked by the robots (forced to place) for 4 steps,
it disappears, and then a new intruder appears in a random
cell in the bottom row.

Although these specifications were developed by students,
their use does not compromise the validity of our evaluation.
First, the specifications are non-trivial: participants developed
the specifications in teams of two over multiple weeks and
were required to develop correct and realizable specifications
for complex systems. Second, our heuristics address diffs in
specification evolution and realizability behavior, which arise
regardless of developers’ level of expertise. Thus, we consider
this corpus sufficiently representative for our purposes.

SPECVER?2S5 includes intermediate versions of specifica-
tions collected during the development process. It was created
by adding a logging mechanism to the Spectra IDE, which
tracked all user interactions with the synthesizer. These logs
capture a fine-grained history of each specification’s evolution,
including realizability checks and other analyses that require
solving the underlying synthesis game. We constructed version
pairs by matching consecutive specification files according to
their timestamps, as recorded by the Spectra logging mech-
anism, within the same project. This makes SPECVER25
unique among other available datasets, as it enables the
reconstruction of the exact sequence of changes made to
each specification over time.

Notice that we reached 3,100 unique pairs of specifications
after we filtered out version pairs that were binary identical,
which accounted for a non-negligible portion of the data. If
these had been included, the applicability rate of heuristic S1
would have been significantly higher. By focusing on mean-
ingful changes, we ensure that our evaluation is conservative.

Finally, note that we could not have used any other col-
lection of GR(1) specifications for our purposes. Previous
SYNTECH benchmarks (see [18], [23]) and the SYNTCOMP
benchmarks (see [13]) could not be used because they include
only a single version of each specification or sometimes a
few versions of a specification but not at a fine-grained, true
granularity recorded from a development process.

2) Implementation: We have implemented our local se-
mantic diff algorithm and heuristics on top of the Spectra
GR(1) synthesizer [23], with a modified version of the CUDD
BDD library, implemented in C [33]. The heuristics were

implemented in both Java and C and integrated into Spectra’s
existing analysis and synthesis pipeline.

To enable the reuse of intermediate data from one realizabil-
ity checking to another, we persist BDD structures on the disk.
Specifically, we serialize BDDs in a compact binary format
using CUDD’s storing mechanism. This allows us to reload
and initialize the algorithm with prior results (Z,, or —Z,,)
without recomputation.

3) Validation: To validate the correctness of our imple-
mentation of the heuristics, we conducted extensive testing.
Specifically, we ran over all the pairs of specifications available
in SPECVER25. We compared the results between the public
version of Spectra (i.e., without our heuristics), and our
evolution-aware heuristics, to check that they agree.

C. Experiment Setup and Reporting

We ran all experiments on an AWS t3.2xlarge instance
(representing an ordinary laptop with up to 3.1GHz CPU and
32GB RAM) with Windows 10 OS, Java 11, and CUDD 3,
using one CPU core. Times we use are average values of 3
runs, measured in milliseconds. Although the algorithms we
deal with are deterministic, we performed 3 runs as JVM
garbage collection and the CUDD implementation of dynamic
reordering add variance to running times. We used a 10 min
timeout for each realizability checking run.

D. Results

1) RQI: Prevalence of the heuristics: Table IV reports the
prevalence of the heuristics’ applicability in the SPECVER25
dataset. We found that our heuristics are frequent in a
real-world dataset, and applicable in nearly 70% of the
cases. The results show that 24.25% of the cases in the dataset
fall under the “simple” heuristics category, meaning that it
is possible to determine whether the evolution specification
is realizable or not without any fixed-point computation. In
addition, 44.96% of the cases in the dataset fall under the
“advanced” category, meaning that it is possible to leverage
the intermediate data from the realizability checking of the
original specification as a starting point for the computation
of the evolution realizability checking.

The last two columns in Table IV show the first (Q1) and
third (Q3) quartiles of heuristic prevalence across projects.
These quartiles indicate the middle 50% of projects. For
instance, for Al, half of the projects have prevalence between
18.7% and 32.2%, while for S1 the range is 10.9%—18.6%.
Overall, the quartile ranges are fairly tight, which suggests
that the heuristics are consistently useful across projects rather
than being dominated by just one or two cases.

As mentioned in Sect. IV-C, we applied a special treatment
for cases where the specifications include auxiliary variables
implicitly added by advanced language features. We found
that 56.30% of the specifications in our dataset included
auxiliary variables, indicating that our handling of auxiliary
variables in the local semantic diff contributes significantly to
the prevalence of the heuristics’ applicability.

TABLE IV: Heuristics Application Statistics

Heuristics Count % Q1/Project (%) Q3/Project (%)
None 959 30.94 21.54 38.36
Al 740 23.87 18.68 32.15
A2 560 18.06 12.57 22.39
NI 444 14.32 10.94 18.58
S3 214 6.90 4.65 11.11
S2 95 3.06 1.96 4.64
A3 45 1.45 1.35 3.82
A4 43 1.39 1.50 3.08
Total 3100 100.00

2) RQ2: Performance gain of the heuristics: We report
on the performance gain of the heuristics through several
measures: the overall effect on absolute running times, the
ratio between the running time of the evolution-aware real-
izability checking and the baseline realizability checking for
the same specifications (when considering the slowest cases,
where speed-up is more critical), and the effect on the total
number of timeouts.

Our analysis shows that the heuristics significantly improve
the absolute running time of realizability checking. While
the average computation time without heuristics was 34.6
sec. (median of 4.03 sec.), the average computation time using
the heuristics was 23.4 sec. (median of 3.55 sec.).

As another measure of performance gain, we calculate
the ratio between the running time of the evolution-
aware realizability checking and the baseline realizability
checking, for the same specification. For instance, a time
ratio of 0.5 indicates that the heuristic-based approach is twice
as fast. Since speed-up is more critical when the running time
is high, we focused on cases where the baseline realizability
check took over 60 seconds. Fig. 2 (left) shows box-plots of the
time ratios for these cases, grouped by the specific heuristics
applied. The n values reflect the number of such cases for
each heuristics (a 30 seconds threshold shows similar trends).

As can be seen, the heuristics are effective across the
board, with varying degrees of performance gains. SI,
S2, and S3 achieved geometric mean time ratios of 0.0251,
0.0241, and 0.0384 resp. (with medians 0.0217, 0.0269, and
0.0352), making them consistently over an order of magnitude
faster than baseline realizability checking. A Wilcoxon signed-
rank test for S1, S2, and S3 confirmed that their speedup
is statistically significant with (p < 0.0001) and Cohen’s
effect-size d > 1. The advanced heuristics A3 and A4 show
similar improvements, with geometric means of 0.0238 and
0.0282. A2 is also beneficial (geometric mean of 0.2111),
though to a lesser extent - a factor of about 5, since A2 also
involves fixed-point computation as part of the Rabin(1) game
realizability checking. A Wilcoxon signed-rank test for A2,
A3, and A4 confirmed that the speedup of these heuristics
is also statistically significant with (p < 0.0001, except
p < 0.005 for A3) and Cohen’s effect-size d > 1.

A1l showed more modest gains: its geometric mean time
ratio was 0.8880, and its median was 0.9462, meaning it
improved running time in many cases, but not drastically: on
average, Al reduced realizability checking time by about 11%,

1.75 1

1254

1.00 4

Time Ratio

0.75 7

0.50 1

e il

0.00 ——

0.8 4
1.50

0.7 1

1.00

=
n

Time Ratio

o
~
G
Average Time Ratio
I
=

=
w

0.2 1

0.14

T T T T
51 52 S3 Al
(n=84) (n=18) (n=25) (n=86)
Applied Heuristics

A2
(n=98)

(a) Grouped by the applied heuristics

A3
(n=8)

aa
(n=17)

T
All Heuristics
(n=337) 0.0

(b) All cases (c) Per-project

Fig. 2: Box-plots of the time ratio between evolution-aware running time and baseline running time for cases where baseline running time
was above 60 seconds. Outliers are excluded from the plots for readability.

and in over half of the cases, it provided a speed-up of 5% or
more. A Wilcoxon signed-rank test showed that the speedup
of Al is not statistically significant. We investigated the reason
behind A1’s lower performance and found a modest correlation
between higher time ratios and diffs that involved |(6¢) and
1(p®). We found out that 26.74% of the Al cases involved
either of these cases and when filtering them out, the geometric
mean time ratio dropped to 0.8154 (with median of 0.8811).

To further explore the reasons for the relatively modest
performance of Al, we looked at the number of fixed-point
iterations (in Al and A2), over the entire dataset. While in
856 cases (66.46%) there was a reduction in the number of
fixed-point iterations for Al and A2, in only 38 cases (2.95%)
there was an increase in the number of fixed-point iterations,
and the increases where only in A1, not in A2. This data partly
explains the performance results we observed. We further
analyzed the distribution of the slow Al cases (Time Ratio
> 1, with runs longer than 60 seconds) across projects. Such
cases occurred in several teams and tasks, though with varying
frequencies: for example, Team 2 had 2 of 3 Deliveries and
3 of 4 Patrolling cases that were slower, while Team 6 had 5
of 8 Patrolling cases. Other teams showed fewer occurrences,
such as Team 4 Patrolling (6 of 16) and Team 8 Catching
Intruder (2 of 8). Notably, one of the four tasks (Escaping
Guard) had no slow instances at all. A complete breakdown
is included in the artifact. Overall, these observations suggest
that the effect is not systematic, but may depend on specific
teams or patterns of changes.

Despite the more modest performance gains of Al com-
pared to the other heuristics, as we show in Fig. 2 (middle),
across all instances where realizability checking took more
than 60 seconds and a heuristics was applied, the geometric
mean time ratio was 0.1212, that is, an average speed-up
factor of about 8, indicating a substantial improvement
when using the heuristics.

Fig. 2 (right) shows the average performance gain per
project across all instances where realizability checking took
more than 60 seconds. The median ratio is around 0.35, with
most projects falling between 0.25 and 0.6, indicating consis-
tent performance improvements between different projects.

Finally, the performance gain of the heuristics is also visible
in the total number of timeouts. In the entire dataset, 28
cases of baseline realizability checking reached timeout and
there was a relevant heuristics to apply. Out of these, 19
cases (73.08%) didn’t reach the timeout using the heuristics.
Moreover, in the entire dataset we had only 2 cases where
baseline realizability checking didn’t reach the timeout but
the evolution-aware heuristics did.

3) RQ3: Overhead of the heuristics: While our evolution-
aware heuristics offer significant performance benefits for
the overall realizability checking time, they also, naturally,
introduce certain overheads that should be considered. These
overheads include: storing the intermediate data on the disk,
and in particular, storing the Z BDD on the disk, loading the
Z BDD from the disk, loading the previous game model from
the disk, and computing the local semantic diff between v
and ve. In order to measure these overheads, we computed
and logged the running times of each of these operations and
analyzed the overheads they introduce over the entire dataset.
As we will detail next, our findings show that the use of
the heuristics introduces a minimal, negligible overhead to
the overall performance of the realizability checking.

The loading of the previous Z BDD from the disk is
extremely lightweight, with an average of 10.63 ms, a median
of 3.00 ms, and 95% of the cases taking under 33.93 ms.

Loading the previous game model, which involves parsing
the earlier version of the specification and rebuilding its game
model again, has an average time of 2620.56 ms and a median
of 2135.50 ms. 95% of the executions complete within
3120.47 ms, indicating a consistent and bounded overhead.

The local semantic game comparison is also efficient in
practice: it has an average running time of 272.29 ms, a median
of 19.33 ms, and 95% of comparisons finish in under 496.10
ms. This low overhead is expected since the local semantic
diff algorithm does not involve fixed-point computations nor
quantifications, and consists of a constant number of Boolean
operations, plus O(n?) additional Boolean operations, where n
is the number of justice assertions. Since n is typically small,
the complexity remains low, and the heuristics remain scalable
and fast even as specifications evolve and grow.

Finally, storing the Z BDD introduces the highest overhead
among the measured steps, with an average of 2863.46 ms and
a median of 85.33 ms. As such, 95% of the cases complete
in under 15172.40 ms. Importantly, this operation executes
only after the realizability checking has been completed and
its result has been presented to the developer, as it is used
only to persist intermediate data for potential reuse. Therefore,
it does not interfere with the speed at which the checking
result is produced, and does not have any influence on the
user experience of the specification developer.

In summary, the heuristics’ overhead is small across all
measured steps. Most operations complete within a few
hundred milliseconds, and even in the rare more expensive
cases, 95% of overheads out of more than 3,000 samples
remain low. This confirms that the heuristics are suitable
for practical use without introducing noticeable delays.

E. Threats to Validity

We discuss threats to the validity of our results. First, the
implementation of the diff algorithm, the heuristic detector,
and the heuristics as part of the realizability checking algo-
rithm is nontrivial, and may have bugs. To mitigate this, we
performed validation of our implementation using unit tests for
each component. In addition, the design of our evaluation also
validates our implementation, as for each pair of specifications,
we ensure that the realizability checks of the baseline and
evolution-aware algorithms agree. See Sect. VI-B3.

Second, although our algorithms are deterministic, the
garbage collection of the JVM and CUDD introduces variance
to the running times. To mitigate this, we repeated each
experiment 3 times, and we report average values.

Third, although the results were obtained from a large
corpus with more than 3,000 unique pairs of specifications, it is
possible that different results could be obtained when running
on a different dataset. In particular, our dataset comprises four
robotic systems developed by 11 student teams each, which
may limit the diversity of domains, complexity, and devel-
opment practices represented. While the specifications were
created iteratively by real users in realistic settings, results
may not fully generalize to industrial projects, other domains,
or more complex specifications. We partly mitigated this by
analyzing results per project and observing consistent trends
across all four tasks. Further, since our local semantic diff
operates at the granularity of small changes, the applicability
of heuristics depends more on the structure of edits than on
the overall system domain or project size, partially reducing

this threat. Still, further studies on industrial or heterogeneous
datasets are needed to strengthen external validity.

VII. CONCLUSION, IMPLICATIONS, AND FUTURE WORK

We introduced evolution-aware heuristics to enhance the
performance of GR(1) realizability checking. Our heuristics
are based on the observation that the development process
of specifications for reactive synthesis involves frequent re-
alizability checks, and that intermediate data from previous
realizability checks can be used to make realizability checking
faster. Our evaluation shows that the applicability of such
heuristics is high and that they have the potential to signif-
icantly improve the running times of realizability checking.

The heuristics target the developer feedback loop in the
synthesis environment. Our results show that many iterative
edits yield diffs that can enable faster realizability checks and,
as a result, more responsive tooling. This improvement is not
only measurable but meaningful: it supports new interaction
techniques, such as a continuous ‘“realizability monitoring”
that provides continuous realizability status to the developer as
the specification evolves, or a real-time realizability debugger.

We consider the following future work directions. First,
developing evolution-aware heuristics for other analyses, e.g.,
inherent vacuity [26], non-well-separation [11], [22], and
the computation of cores [27]. For example, if a certain
assumption or guarantee is found to be inherently vacuous,
and the diff consists of its removal from the specification, the
realizability of the new specification is identical to that of
the original specification. As another example, if the original
specification is realizable, the diff consists of the addition of
some guarantees, and the new specification is unrealizable,
computing an unrealizable core for the new specification can
be accelerated by a heuristics that exploits the fact that a core
must include at least one of the newly added guarantees (avoid
checking subsets of guarantees that are disjoint to the diff). All
these create further opportunities to use an evolution-aware
heuristics and significantly improve developers’ experience.

Another future direction is to combine our semantic diff
with a syntactic one, to provide user friendly insights about
the diff between versions of specifications and use them, e.g.,
to suggest commit messages or assist in specification review.

Artifact availability

The artifact includes (1) the implementation of our heuris-
tics, (2) the dataset used for evaluation, (3) scripts to re-
produce the performance measurements of the heuristics,
(4) a description of the four development tasks, and (5) a
Python notebook containing the statistical analysis and plots
presented in Sect. VI. The artifact is publicly available at:
https://doi.org/10.5281/zenodo.17069809.

Acknowledgments

This research was supported by the Israel Science Founda-
tion (grant No. 1954/23, SPECTACKLE) as well as by Len
Blavatnik and the Blavatnik Family Foundation. The authors
thank the anonymous reviewers for helpful comments.

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-Gazit.
Reactive mission and motion planning with deadlock resolution avoiding
dynamic obstacles. Auton. Robots, 42(4):801-824, 2018.

G. Amram, D. Ma’ayan, S. Maoz, O. Pistiner, and J. O. Ringert. Triggers
for reactive synthesis specifications. In 45th IEEE/ACM International
Conference on Software Engineering, ICSE 2023, pages 729-741. IEEE,
2023.

D. Beyer, S. Lowe, E. Novikov, A. Stahlbauer, and P. Wendler. Precision
reuse for efficient regression verification. In Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE’13,
pages 389-399. ACM, 2013.

R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Konighofer,
M. Roveri, V. Schuppan, and R. Seeber. RATSY — A New Requirements
Analysis Tool with Synthesis. In Computer Aided Verification, pages
425-429. Springer Berlin Heidelberg, 2010.

R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis
of Reactive(1) Designs. J. Comput. Syst. Sci., 78(3):911-938, 2012.

D. G. Cavezza, D. Alrajeh, and A. Gyorgy. Minimal assumptions refine-
ment for realizable specifications. In K. Bae, D. Bianculli, S. Gnesi, and
N. Plat, editors, FormaliSE@ICSE 2020: 8th International Conference
on Formal Methods in Software Engineering, Seoul, Republic of Korea,
July 13, 2020, pages 66-76. ACM, 2020.

L. M. de Moura and N. S. Bjgrner. Z3: an efficient SMT solver. In
C. R. Ramakrishnan and J. Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference,
TACAS, volume 4963 of LNCS, pages 337-340. Springer, 2008.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of the 21st
International Conference on Software Engineering, ICSE 99, page
411-420, New York, NY, USA, 1999. Association for Computing
Machinery.

N. Eén and N. Sorensson. An extensible SAT-solver. In Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT
2003, Selected Revised Papers, volume 2919 of LNCS, pages 502-518.
Springer, 2003.

E. Firman, S. Maoz, and J. O. Ringert. Performance heuristics for GR(1)
synthesis and related algorithms. Acta informatica, 57(1):37—79, 2020.
A. Gorenstein, S. Maoz, and J. O. Ringert. Kind controllers and fast
heuristics for non-well-separated GR(1) specifications. In Proceedings of
the 46th IEEE/ACM International Conference on Software Engineering,
ICSE 2024, pages 28:1-28:12. ACM, 2024.

K. Greimel, R. Bloem, B. Jobstmann, and M. Y. Vardi. Open implication.
In Automata, Languages and Programming, 35th International Collo-
quium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings,
Part II - Track B: Logic, Semantics, and Theory of Programming & Track
C: Security and Cryptography Foundations, volume 5126 of LNCS,
pages 361-372. Springer, 2008.

S. Jacobs, G. A. Perez, R. Abraham, V. Bruyere, M. Cadilhac,
M. Colange, C. Delfosse, T. van Dijk, A. Duret-Lutz, P. Faymonville,
et al. The Reactive Synthesis Competition (SYNTCOMP): 2018-2021.
arXiv preprint arXiv:2206.00251, 2022.

R. Konighofer, G. Hofferek, and R. Bloem. Debugging formal specifi-
cations: a practical approach using model-based diagnosis and coun-
terstrategies. International journal on software tools for technology
transfer, 15(5):563-583, 2013.

D. Kozen. Results on the propositional p-calculus. Theoretical computer
science, 27(3):333-354, 1983.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based
reactive mission and motion planning. /EEE Transactions on Robotics,
25(6):1370-1381, 2009.

X. Li, D. Shannon, J. Walker, S. Khurshid, and D. Marinov. Analyzing
the uses of a software modeling tool. In Proceedings of the Sixth Work-
shop on Language Descriptions, Tools, and Applications, LDTA@ETAPS
2006, volume 164 of Electronic Notes in Theoretical Computer Science,
pages 3-18. Elsevier, 2006.

D. Ma’ayan and S. Maoz. Using reactive synthesis: An end-to-end
exploratory case study. In 45th IEEE/ACM International Conference on
Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20,
2023, pages 742-754. 1IEEE, 2023.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

D. Ma’ayan, S. Maoz, and J. O. Ringert. Exploring development
methods for reactive synthesis specifications. ACM Trans. Softw. Eng.
Methodol., Sept. 2025.

S. Maniatopoulos, P. Schillinger, V. Pong, D. C. Conner, and H. Kress-
Gazit. Reactive high-level behavior synthesis for an atlas humanoid
robot. In 2016 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 41924199, 2016.

S. Maoz and J. O. Ringert. GR(1) synthesis for LTL specification
patterns. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, page 96-106. ACM, 2015.
S. Maoz and J. O. Ringert. On well-separation of GR(1) specifications.
In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE 2016, page 362-372,
New York, NY, USA, 2016. Association for Computing Machinery.

S. Maoz and J. O. Ringert. Spectra: a specification language for reactive
systems. Softw. Syst. Model., 20(5):1553-1586, 2021.

S. Maoz, J. O. Ringert, and R. Shalom. Symbolic repairs for GR(1)
specifications. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 1016-1026, 2019.

S. Maoz and Y. Sa’ar. Two-Way Traceability and Conflict Debugging
for AspectLTL Programs. LNCS Trans. Aspect Oriented Softw. Dev.,
10:39-72, 2013.

S. Maoz and R. Shalom. Inherent vacuity for GR(1) specifications.
In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, page 99-110. ACM, 2020.

S. Maoz and R. Shalom. Unrealizable cores for reactive systems
specifications. In Proceedings of the 43rd International Conference on
Software Engineering (ICSE), page 25-36. IEEE Press, 2021.

S. Maoz and I. Shevrin. Just-in-time reactive synthesis. In Proceedings
of the 35th IEEE/ACM International Conference on Automated Software
Engineering, page 635-646. ACM, 2020.

C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T. Berger.
Specification patterns for robotic missions. [EEE Transactions on
Software Engineering, 47(10):2208-2224, 2021.

A. Pnueli and R. Rosner. On the synthesis of a reactive module.
In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’89, page 179-190. ACM,
1989.

M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Transactions of the American Mathematical Society,
141:1-35, 1969.

L. Ryzhyk and A. Walker. Developing a practical reactive synthesis tool:
Experience and lessons learned. In R. Piskac and R. Dimitrova, editors,
Proceedings Fifth Workshop on Synthesis, SYNT@ CAV 2016, Toronto,
Canada, July 17-18, 2016, volume 229 of EPTCS, pages 84-99, 2016.
F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3. 0.
University of Colorado at Boulder, 621, 1998.

W. Wang, K. Wang, M. Gligoric, and S. Khurshid. Incremental Analysis
of Evolving Alloy Models. In T. Vojnar and L. Zhang, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 25th
International Conference, TACAS 2019, volume 11427 of LNCS, pages
174-191. Springer, 2019.

R. Yatskan, I. Shevrin, and S. Maoz. Performance heuristics for GR(1)
realizability checking and related analyses. In Tools and Algorithms
for the Construction and Analysis of Systems - 31st International Con-
ference, TACAS 2025, volume 15696 of LNCS, pages 40-59. Springer,
2025.

	introduction
	Preliminaries and Related Work
	GR(1)
	Rabin(1) Game
	Spectra
	Performance Heuristics for GR(1)
	Diff-based and Incremental Analyses

	Problem Statement and Solution Overview
	Local Semantic Diff
	Basic Local Semantic Diff
	Soundness, Locality, and Complexity
	Computing Local Semantic Diff between Specifications with Advanced Language Features

	Evolution-Aware Heuristics
	What Do We Keep on the Disk?
	Simple Heuristics
	Advanced Heuristics
	Incompleteness

	Evaluation
	Research Questions
	Specification Corpus, Implementation, and Validation
	Corpus
	Implementation
	Validation

	Experiment Setup and Reporting
	Results
	RQ1: Prevalence of the heuristics
	RQ2: Performance gain of the heuristics
	RQ3: Overhead of the heuristics

	Threats to Validity

	Conclusion, Implications, and Future Work
	References

